HomePUP Journal of Science and Technologyvol. 13 no. 1 (2020)

INFLUENCE OF SALINITY IN FATTY ACID PRODUCTION OF Dunaliella sp. AS FEEDSTOCK FOR BIODIESEL

John Erasmos Marie P Talosig | Kia Dyan Louren I Serrano | Armin S Coronado

Discipline: natural sciences (non-specific), production and manufacturing engineering

 

Abstract:

Dunaliella sp. is a unicellular, eukaryotic, photosynthetic, and halophilic microalga. It is one of the prospective microalgae being utilized for its significant amounts of valuable chemical matters such as carotenoid, glycerol, and lipids. Dunaliella has a potential as feedstock in the production of biodiesel but there is only limited data and information available as most studies are focused to commercial production of highvalue products such as beta-carotene. Therefore, it is necessary to evaluate the culture condition of Dunaliella sp. that promotes higher lipid production. Dunaliella sp. was cultivated at varying salinity conditions (45 g/L, 50 g/L, 55 g/L, 60 g/L, 65 g/L, and 70 g/L) using Conway medium (CM). Algal biomass for each culture condition was harvested at the end of logarithmic phase [Period 1 (P1) or day 10] and onset of decline phase [Period 2 (P2) or day 13] of cultivation. At P1, the highest biomass was obtained from CM50 (1.152 ± 0.120 g/L) while CM45 (2.109 ± 0.168 g/L) for P2. Lipid/oil was extracted from algal biomass cultivated at different salinity concentrations by Bligh and Dyer method using solvent mixture of chloroform and methanol (1:2). CM60 has the highest oil yield in both periods, P1 (1.494 ± 0.190 %) and in P2 (1.636 ± 0.173%). Lipid/Oil from top three (3) oil producing treatments were transesterified to produce the Fatty Acid Methyl Ester (FAME) and subjected to Gas Chromatography - Mass Spectrometry (GC-MS) for fatty acid composition analysis. There are 22 fatty acids identified in P1 while 28 fatty acids in P2. However, only 11 fatty acids identified in all treatments were desirable for biodiesel production namely myristic acid, methyl pentadecanoate acid, palmitic acid, stearic acid, palmitoleic acid, methyl palmitoleate acid, valeric acid, elaidic acid, linoleic acid, oleic acid, and petroselinic acid. Among algal cultures, only CM55 exhibited ideal mix ratio of fatty acid’s palmitoleic (16:1), oleic acid (18:1), and myristic acid (14:0) with good biodiesel property (5:3:1). Therefore, Dunaliella sp. has a potential as feedstock for biodiesel production with decent amount biomass and lipid/oil using Conway medium that can also exhibit good fuel properties when cultivated at 55g/L of salinity.



References:

  1. Abu-Rezq, T.S., Al-Hooti, S., & Jacob, D.A. (2010). Optimum culture conditions required for the locally isolated Dunaliella salina. Journal Algal Biomass Utilization, 1(2), 12-19.
  2. Ahmed, R. A., He, M., Aftab, R. A., Zheng, S., Nagi, M., Bakri, R., & Wang, C. (2017). Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production. Scientific Reports, 7(1), 1-10.
  3. Al-Hassan, R. H., Ghannoum, M. A., Sallal, A. K., Abu-Elteen, K. H., & Radwan, S. S., (1987). Correlative changes of growth, pigmentation, and lipid composition of Dunaliella salina in response to halostress. Journal of General Microbiology, 133(9), 2607-2616.
  4. Azachi, M., Sadka, A., Fisher, M., Goldshlag, P., Gokhman, I., & Zamir, A. (2003). Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiology, 132(2), 1115.
  5. Ben-Amotz, A., & Avron, M. (1992). Dunaliella: Physiology, biochemistry, and
  6. biotechnology. CRC Press, Boca Raton, p. 240. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917.
  7. Davis, R. W., Carvalho, B. J., Jones, H. D., & Singh, S. (2015). The role of photoosmotic adaptation in semi-continuous culture and lipid particle release from Dunaliella viridis. J. Appl. Phycol. 27(1), 109-123.
  8. Fakhry, E. M., & El Maghraby, D. M. (2013). Fatty acids composition and biodiesel characterization of Dunaliella salina. Journal of Water Resource and Protection, 5, 894-899.
  9. Fujii, S., Uenaka, M., Nakayama, S., Yamamoto, R., & Mantani, S. (2001). Effects of sodium chloride on the fatty acids composition in Boekelovia hooglandii (Ochromonadales, Chrysophyceae). Phycological Research, 49(1), 73-77.
  10. Ghoshal, D., Mach, D., Agarwal, M., Goyal, A., & Goyal, A. (2002). Osmoregulatory isoform of dihydroxyacetone phosphate reductase from Dunaliella tertiolecta: purification and characterization. Protein Expression and Purification, 24(3), 404-411.
  11. Gu, N., Lin, Q., Li, G., Tan, Y., Huang, L., & Lin, J. (2012). Effect of salinity on the growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179. Eng. Life Sci. 12(5), 631-637.
  12. Hadi, M. R., Shariati, M., & Afsharzadeh, S. (2008). Microalgal biotechnology: Carotenoid and glycerol production by the green algae Dunaliella isolated from the Gave-Khooni salt marsh, Iran. Biotechnology and Bioprocess Engineering, 13(5), 540-544.
  13. Hallenbeck, P. C., & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27(11-12), 1185-1193.
  14. Hamed, I., Burcu, A. N., IşıN, O., Uslu, L., & Vursavuş, K. K. (2018). The effect of temperature and salinity on the growth and carotenogenesis of three Dunaliella species (Dunaliella sp. LaNe Isolate, D. salina CCAP 19/18, and D. bardawil LB 2538) Cultivated under Laboratory Conditions. Culture, 19, 18.
  15. Heraud, P., & Beardall, J. (2000). Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes. Photosynthesis Research, 63(2), 123-134.
  16. Hounslow, E. (2010). Optimum salinity conditions for producing lipids from Dunaliella salina for biofuels production, Energy Futures Doctoral Training Centre for Interdisciplinary Energy Research. Mini-project Report, 5, 13-21.
  17. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54(4), 621-639.
  18. International Energy Agency (IEA). 2007. World Energy Outlook. 2007. China and India Insights. International Energy Agency Publications: Paris, France. Jiménez, C., & Niell, F. X. (1991). Growth of Dunaliella viridis Teodoresco: Effect of salinity, temperature and nitrogen concentration. Journal of Applied Phycology, 3(4), 319-327.
  19. Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86(10), 1059-1070.
  20. Kuiper, P.J.C. (1985). Environmental changes and lipid metabolism of higher plants. Physiol, Plant, 64(1), 118-122.
  21. Lakshminarayanan, P.A., & Aghav, Y.V. (2009). Modelling Diesel Combustion. Springer Science & Business Media.
  22. Martinez, M.R., Charkoff, R.P., Pantastico, J.B. (1975). Note: Direct phytoplankton counting techniques using the haemocytometer. Phil. Agri. 59, 43-60.
  23. Martinez-Goss, M.R., & Dionisio-Sese, M. L. (2001). Chlorophyll analysis. In: Analysis of Algae for Food by Martinez-Goss M.R., Dionisio-Sese, M.L., Migo, V., Elegado, F., Hori, K. (2001) DOST-PCASTRD, Bicutan, Taguig, Metro Manila, Philippines. 27-45.
  24. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232.
  25. Milano, J., Ong, H. C., Masjuki, H. H., Chong, W. T., Lam, M. K., Loh, P. K., & Vellayan, V. (2016). Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable and Sustainable Energy Reviews, 58, 180-197.
  26. Mishra, A., Mandoli, A., & Jha, B. (2008). Physiological characterization and stress-induced metabolic responses of Dunaliella salina isolated from salt pan. Journal of Industrial Microbiology and Biotechnology, 35(10), 1093.
  27. Patil, V., Tran, K. Q., & Giselrød, H. R. (2008). Towards sustainable production of biofuels from microalgae. International Journal of Molecular Sciences, 9(7), 1188-1195.
  28. Peeler, T.C., Stephenson, M. B., Einsphar, K.J., & Thompson Jr, G.A. (1989). Lipid characterization of an enriched plasma membrane fraction of Dunaliella salina grown in media of varying salinity. Plant Physiol. 89(3), 970–976.
  29. Peng, L., Fu, D., Chu, H., Wang, Z., & Qi, H. (2020). Biofuel production from microalgae: A review. Environmental Chemistry Letters, 18(2), 285-297.
  30. Rad, F. A., Aksoz, N., & Hejazi, M. A. (2011). Effect of salinity on cell growth and βcarotene production in Dunaliella sp. isolates from Urmia Lake in northwest of Iran. African Journal of Biotechnology, 10(12), 2282-2289.
  31. Rasoul-Amini, S., Mousavi, P., Montazeri-Najafabady, N., Mobasher, M. A., Mousavi, S. B., Vosough, F., & Ghasemi, Y. (2014). Biodiesel properties of native strain of Dunaliella salina. International Journal of Renewable Energy Research, 4(1), 39-41.
  32. Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten C., Kruse, O., & Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research, 1(1), 20-43.
  33. Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., & Smith, A. G. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21(3), 277-286.
  34. Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5(5), 1532-1553.
  35. Sonnekus, M.J. (2010). Effects of salinity on the growth and lipid production of ten species of microalgae from the Swartkops Saltworks: A biodiesel perspective (Doctoral dissertation). Nelson Mandela Metropolitan University, Faculty of Science, p. 98.
  36. Tafreshi, A. H., & Shariati, M., (2006). Pilot culture of three strains of Dunaliella salina for β-carotene production in open ponds in the central region of Iran. World J. Microbiol. Biotechnol., 22(9), 1003–1009.
  37. Takagi, M., & Karseno, Y. T. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101(3), 223-226.
  38. Talebi, A.F, Tabatabaei, M., Mohtashami, S.K., Tohidfar, M., & Moradi, F. (2013). Comparative salt stress study on intracellular ion concentration in marine and saltadapted freshwater strains of microalgae. Not. Sci Biol 5(3), 309-315.
  39. Zhila, N.O., Kalacheva, G.S., & Volova, T.G. (2011). Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kutz IPPAS H-252. J. Appl. Phycol., 23(1), 47-52.