HomeRecoletos Multidisciplinary Research Journalvol. 12 no. 1 (2024)

Development and Evaluation of a High-Efficacy Solar-Powered Light Trap for Rice Black Bug (Scotinophara Coartata) Management

Rogen A Cagorol | Angel T Sabusap

Discipline: Agriculture

 

Abstract:

Rice black bugs (RBB) are a major pest causing significant yield losses in rice farms. This study investigates a novel solar-powered light trap for RBB control. The trap utilizes LEDs with different color temperatures (warm white and daylight) and incorporates an auto-response system for efficient operation. Performance evaluation over three months revealed the highest efficacy for the 50-watt warm white LED bulb (948 grams captured), followed by the daylight bulb (724 grams). However, the study found no significant difference between developing light traps with warm white and daylight LED in capturing RBBs. The trap's functionality was excellent, with low maintenance requirements. These findings suggest that the solar-powered light trap with warm white LEDs offers a promising, sustainable solution for RBB management in rice production.



References:

  1. Batay-an, E. H., Torrena, P. S., & Estoy, A. B. (2007). Bioecological studies on rice black bug Scotinophara coarctata (Fabricius) in Cotabato, Mindanao, Philippines. In R. Joshi, A. Barrion, & L. Sebastian (Eds.), Rice black bugs: Taxonomy, ecology and management of invasive species (pp. 339-350). Philippine Rice Research Institute. https://portal.bar.gov.ph/BARPortal/uploads/e-library/material_file/2007_RiceBlackBugs_13689111954.pdf
  2. Calderon, R. A. (2017, December 17-18). Solar powered rice black bug light trap [Conference session]. Proceedings of the 6th International Conference on Advances in Science, Engineering and Technology, Manila, Philippines. https://uruae.org/siteadmin/upload/AE12171002.pdf
  3. Feys, J., De Cauwer, B., Reheul, D., Sciffer, C., Clercx, S., & Palmans, S. (2023). Impact of electrocution on shoot and tuber vitality of yellow nutsedge (Cyperus esculentus). Agriculture, 13(3), 696. https://doi.org/10.3390/agriculture13030696
  4. Kim, K.-N., Huang, Q.-Y., & Lei, C.-L. (2019). Advances in insect phototaxis and application to pest management: A review. Pest Management Science, 75(12), 3135-3143. https://doi.org/10.1002/ps.5536
  5. Litsinger, J. A. (2007). Cultural, mechanical, and physical control of rice black bugs. In R. Joshi, A. Barrion, & L. Sebastian (Eds.), Rice black bugs: Taxonomy, ecology and management of invasive species (pp. 387-398). Philippine Rice Research Institute. https://portal.bar.gov.ph/BARPortal/uploads/e-library/material_file/2007_RiceBlackBugs_13689111954.pdf
  6. Martillano, D. A., Alforja, B. M., Benjamin, T. K. S., De Ramos, J. M. E., & Wong, A. J. M. (2019, October). Wireless network enabled rice black bug traps with meteorological wind sensory system and intelligent trap distance detection using IoT technology [Conference session]. Proceedings of the 2019 International Communication Engineering and Cloud Computing Conference, Association for Computing Machinery, New York, NY, United States. https://doi.org/10.1145/3380678.3380683
  7. Martillano, D. A., Catabui, K. F., & Manloctao, G. C. N. (2021, December). Structural equation model on attracting and catching Scotinophara coarctata using an alternative light trap via light emitting diodes. In 2021 International Conference on Artificial Intelligence and Blockchain Technology (AIBT) (pp. 70-79). IEEE. https://doi.org/10.1109/AIBT53261.2021.00019
  8. Nielsen, A. L., Holmstrom, K., Hamilton, G. C., Cambridge, J., & Ingerson–Mahar, J. (2013). Use of black light traps to monitor the abundance, spread, and flight behavior of Halyomorpha halys (Hemiptera: Pentatomidae). Journal of Economic Entomology, 106(3), 1495-1502. https://doi.org/10.1603/EC12472
  9. Park, J. H., & Lee, H. S. (2017). Phototactic behavioral response of agricultural insects and stored product insects to light-emitting diodes (LEDs). Applied Biological Chemistry, 60, 137-144. https://doi.org/10.1007/s13765-017-0263-2
  10. Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, 124657. https://doi.org/10.1016/j.jclepro.2020.124657
  11. Redondo, G. O., Launio, C. C., & Manalili, R. G. (2007). Farmers’ knowledge, perceptions and management practices on rice black bug. In R. Joshi, A. Barrion, & L. Sebastian (Eds.), Rice black bugs: Taxonomy, ecology and management of invasive species (pp. 287-306). Philippine Rice Research Institute. https://portal.bar.gov.ph/BARPortal/uploads/e-library/material_file/2007_RiceBlackBugs_13689111954.pdf
  12. Ritter, C. D., Häggqvist, S., Karlsson, D., Sääksjärvi, I. E., Muasya, A. M., Nilsson, R. H., & Antonelli, A. (2019). Biodiversity assessments in the 21st century: The potential of insect traps to complement environmental samples for estimating eukaryotic and prokaryotic diversity using high-throughput DNA metabarcoding. Genome, 62(3), 147-159. https://doi.org/10.1139/gen-2018-0096
  13. Sepe, M., Torres, M. A. J., Joshi, R., & Demayo, C. (2019a). Describing selected populations of the rice black bugs in the Philippines using correlation analysis based on distances (CORIANDIS). Arthropods, 8(1), 17-31. http://www.iaees.org/publications/journals/arthropods/articles/2019-8(1)/rice-black-bugs-Correlation-Analysis-Based-on-Distances.pdf
  14. Sepe, M. C., Torres, M. A. J., Joshi, R. C., & Demayo, C. G. (2019b). Quantitative description of the scutellum of rice black bugs in the Philippines using landmark-based geometric morphometrics. Ciência 38, 1-15. https://www.academia.edu/41822735/Quantitative_Description_of_the_Scutellum_of_Rice_Black_Bugs_in_the_Philippines_using_Landmark_based_Geometric_Morphometrics
  15. Wakefield, A., Broyles, M., Stone, E. L., Jones, G., & Harris, S. (2016). Experimentally comparing the attractiveness of domestic lights to insects: Do LEDs attract fewer insects than conventional light types? Ecology and Evolution, 6(22), 8028-8036. https://doi.org/10.1002/ece3.2527