HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 6 no. 2 (2025)

Diminishing Marginal Utility of Technological Devices toward Academic Performance in Mathematics, Reading, and Science

Gerald Martos | David S. Jose

Discipline: Education

 

Abstract:

The Philippines, in its pursuit of aligning its education system with global standards, has participated in the Program for International Student Assessment (PISA) which evaluates 15-year-olds' reading, scientific, and mathematical proficiency. However, the 2022 PISA report ranked Filipino learners among the lowest five in reading, science, and mathematics. This study explores how ownership of technological devices influences student performance in these domains. Using Ordinal Logistic Regression, we analyze the 2022 PISA ordinal data for 7608 Filipino students. Results show a diminishing marginal return on academic achievement as device ownership increases. While initial access to technology boosts performance, the effect weakens as students own more devices. This trend is stronger among learners without siblings and persists regardless of internal or external digital distractions. Findings emphasize the need for balanced digital engagement. Rather than restricting access or full enablement, families and policymakers should focus on strategic technology use to enhance education, aligning with Sustainable Development Goals for quality learning.



References:

  1. Abd.  Rashid,  J.,  Abdul  Aziz,  A.,  Abdul  Rahman, A., Saaid, S. A., & Ahmad, Z. (2020). The in-fluence of mobile phone addiction on aca-demic    performance    among    teenagers. Jurnal  Komunikasi:  Malaysian  Journal  of Communication, 36(3), 408–424. https://doi.org/10.17576/JKMJC-2020-3603-25
  2. Alzahabi,  R.,  Becker,  M.  W.,  &  Hambrick,  D.  Z. (2017).  Investigating  the  relationship  be-tween  media  multitasking  and  processes involved  in  task-switching. Journal  of  Ex-perimental Psychology: Human Perception and    Performance, 43(11),    1872–1894. https://doi.org/10.1037/xhp0000412
  3. Aprianti,  F.,  Dayurni,  P.,  Fajari,  L.  E.  W.,  Per-nanda, D., & Meilisa, R. (2022). The impact of gadgets on student learning outcomes: A case  study  in  indonesia  junior  high  school students. https://doi.org/10.5281/ZE-NODO.7446724
  4. Attia,  N.,  Baig,  L.,  Marzouk,  Y.  I.,  &  Khan,  A. (2017). The potential effect of technology and  distractions  on  undergraduate  stu-dents’ concentration. Pakistan  Journal  of Medical Sciences, 33(4). https://doi.org/10.12669/pjms.334.12560
  5. Badir, A., Tsegaye, S., & Girimurugan, S. (2023). The  effect  of  mcgraw-hill  connect  online assessment on students’ academic perfor-mance    in    a    mechanics    of    materials course*. International Journal of Engineer-ing Education, 39(5), 1242–1255. Scopus.
  6. Behnamian,  A.,  Millard,  K.,  Banks,  S.  N.,  White, L.,  Richardson,  M.,  &  Pasher,  J.  (2017).  A systematic  approach  for  variable  selec-tion  with  random  forests:  Achieving  sta-ble variable importance values. IEEE Geo-science    and    Remote    Sensing    Letters, 14(11),  1988–1992.  IEEE  Geoscience  and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2017.2745049
  7. Bjerre-Nielsen,  A.,  Andersen,  A.,  Minor,  K.,  & Lassen, D. D. (2020). The negative effect of smartphone use on academic performance  may  be  overestimated:  Evi-dence  from  a  2-year  panel  study. Psycho-logical Science, 31(11), 1351–1362. https://doi.org/10.1177/0956797620956613
  8. Buctot,  D.  B.,  Kim,  N.,  &  Kim,  S.-H.  (2021).  Per-sonal  profiles,  family  environment,  pat-terns   of   smartphone   use,   nomophobia, and smartphone addiction across low, av-erage,  and  high  perceived  academic  per-formance  levels  among  high  school  stu-dents   in   the   philippines. International Journal   of   Environmental   Research   and Public Health, 18(10). https://doi.org/10.3390/ijerph18105219
  9. Davidov,  O.,  &  Peddada,  S.  (2013).  Testing  for the  multivariate  stochastic  order  among ordered  experimental  groups  with  appli-cation  to  dose–response  studies. Biomet-rics, 69(4), 10.1111/biom.12070. https://doi.org/10.1111/biom.12070
  10. Djinovic,   V.,   &   Giannakopoulos,   N.   (2024). Home  computer  ownership  and  educa-tional  outcomes  of  adolescents  in  greece. Education    Economics, 32(4),    523–537. https://doi.org/10.1080/09645292.2023.2243550
  11. Dolgun,  A.,  &  Saracbasi,  O.  (2014).  Assessing proportionality  assumption  in  the  adja-cent  category  logistic  regression  model. Statistics and Its Interface, 7(2), 275–295. https://doi.org/10.4310/SII.2014.v7.n2.a12
  12. Drain, T., Grier, L., & Wenying,  S. (2012). Is the growing  use  of  electronic  devices  benefi-cial   to   academic   performance?   Results from  archival  data  and  a  survey. Issues In Information    Systems, 13(1),    225–231. https://doi.org/10.48009/1_iis_2012_225-231
  13. Fairlie, R. W., Beltran, D. O., & Das, K. K. (2010). Home   computers   and   educational   out-comes: Evidence from the nlsy97 and cps. Economic Inquiry, 48(3), 771–792. https://doi.org/10.1111/j.1465-7295.2009.00218.x
  14. Fairlie,  R.  W.,  &  Robinson,  J.  (2013).  Experi-mental  evidence  on  the  effects  of  home computers    on    academic    achievement among    schoolchildren. American    Eco-nomic  Journal:  Applied  Economics, 5(3), 211–240. https://doi.org/10.1257/app.5.3.211
  15. Fernández-Navarro,  F.  (2017).  A  generalized logistic  link  function  for  cumulative  link models  in  ordinal  regression. Neural  Pro-cessing Letters, 46(1), 251–269. https://doi.org/10.1007/s11063-017-9589-3
  16. Fonseca, D., Martí, N., Redondo, E., Navarro, I., & Sánchez,  A. (2014). Relationship between student   profile,   tool   use,   participation, and academic performance with the use of Augmented Reality technology for visual-ized  architecture  models. Computers  in Human Behavior, 31, 434–445. https://doi.org/10.1016/j.chb.2013.03.006
  17. Gelman,  A.,  Jakulin,  A.,  Pittau,  M.  G.,  &  Su,  Y.-S. (2008).   A   weakly   informative   default prior distribution for logistic and other re-gression  models. The  Annals  of  Applied Statistics, 2(4). https://doi.org/10.1214/08-AOAS191
  18. GEM Report UNESCO. (2023). Global education monitoring report 2023: Technology in ed-ucation:  a  tool  on  whose  terms?(1st  ed.). GEM Report UNESCO. https://doi.org/10.54676/UZQV8501
  19. Ghimire,  N.  (2024). Understanding  Disparities: Examining   Demographic,   socioeconomic, and Linguistic Impacts on U.S. Students’ Outcomes  in  Reading,  Math,  and  Science. https://doi.org/10.31124/ad-vance.24226158.v1
  20. Giray, L., Nemeño, J., Braganaza, J., Lucero, S. M., &  Bacarra,  R.  (2024).  A  survey  on  digital device   engagement,   digital   stress,   and coping  strategies  among  college  students in the Philippines. International Journal of Adolescence  and  Youth, 29(1),  2371413. https://doi.org/10.1080/02673843.2024.2371413
  21. Gnona, K. M., &  Stewart, W. C. L. (2022). Revis-iting  the  wald  test  in  small  case-control studies with a skewed covariate. American Journal  of  Epidemiology, 191(8),  1508–1518. https://doi.org/10.1093/aje/kwac058
  22. Gunawan,  A.,  Fong  Cheong,  M.  L.,  &  Poh,  J. (2018).   An   essential   applied   statistical analysis  course  using  rstudio  with  pro-ject-based learning for data science. 2018 IEEE  International  Conference  on  Teach-ing,  Assessment,  and  Learning  for  Engi-neering (TALE), 581–588. https://doi.org/10.1109/TALE.2018.8615145
  23. Inquirer.  (2021). 58%  of  Filipino  students  used devices  for  distance  learning –SWS  |  In-quirer  News.  Inquirer.Net.  https://news-info.inquirer.net/1402235/sws-58-of-pi-noy-students-used-devices-for-distance-learning
  24. Kostić, J., & Ranđelović, K. R. (2022). Digital dis-tractions:  Learning  in  multitasking  envi-ronment. Psychological  Applications  and Trends. https://api.seman-ticscholar.org/CorpusID:248626251
  25. Kutzhan, A., Shaikym, A., & Sadyk, U. (2023). A comparative  study  of  the  impact  of  elec-tronic devices on university students’ aca-demic  performance. 2023  17th  Interna-tional Conference on Electronics Computer and Computation (ICECCO), 1–4. https://doi.org/10.1109/ICECCO58239.2023.10147158
  26. Lahcene,  B.  (2015).  Control  charts  for  skewed distributions: Johnson’s distributions. In-ternational Journal of Statistics in Medical Research, 4(2), 217–223. https://doi.org/10.6000/1929-6029.2015.04.02.8
  27. Lai, C.-F., Tsai, C.-W., Chen, S.-Y., Hwang, R.-H., & Yang,  C.-S.  (2017).  An  intelligent  concept map for e-book via automatic keyword ex-traction.  In  T.-T.  Wu,  R.  Gennari,  Y.-M. Huang,  H.  Xie,  &  Y.  Cao  (Eds.), Emerging Technologies  for  Education(Vol.  10108, pp.  75–85).  Springer  International  Pub-lishing.    https://doi.org/10.1007/978-3-319-52836-6_10
  28. Liaw,  A.,  &  Wiener,  M.  (2002).  Classification and  regression  by  randomforest. R  News, 2(3), 18–22.Lu,  F.,  Ferraro,  F.,  &  Raff,  E.  (2022).  Continu-ously  generalized  ordinal  regression  for linear  and  deep  models. Proc.  SIAM  Int. Conf.   Data   Min.,   SDM,   28–36.   Scopus. https://www.scopus.com/inward/rec-ord.uri?eid=2-s2.0-85131330370&part-nerID=40&md5=1ada1ec867dd5d24d163adef88f5f523
  29. Mafunda, B., & Swart, A. J. (2020). The impact of MindTap on the academic achievement of first-year  software  application  students. World  Transactions  on  Engineering  and Technology  Education, 18(1),  63–67.  Sco-pus.
  30. Maydeu-Olivares, A., & Cai, L. (2006). A caution-ary note on using g2(dif) to assess relative model fit in categorical data analysis. Mul-tivariate  Behavioral  Research, 41(1),  55–64. https://doi.org/10.1207/s15327906mbr4101_4
  31. Mundy,  L.  K.,  Canterford,  L.,  Hoq,  M.,  Olds,  T., Moreno-Betancur,  M.,  Sawyer,  S.,  Kosola, S., & Patton, G. C. (2020). Electronic media use  and  academic  performance  in  late childhood:   A   longitudinal   study. PLOS ONE, 15(9), e0237908. https://doi.org/10.1371/jour-nal.pone.0237908
  32. Pinto,  M.,  &  Leite,  C.  (2020).  Digital  technolo-gies  in  support  of  students  learning  in Higher Education: Literature review. Dig-ital    Education    Review, 37,    343–360. https://doi.org/10.1344/der.2020.37.343-360
  33. Pirie,  W.  (2006).  Jonckheere  tests  for  ordered alternatives. In S. Kotz, C. B. Read, N. Bala-krishnan, & B. Vidakovic (Eds.), Encyclope-dia of Statistical Sciences(2nd ed.). Wiley. https://doi.org/10.1002/0471667196.ess1311
  34. Pohlert,  T.  (2024). PMCMRplus:  Calculate  pair-wise  multiple  comparisons  of  mean  rank sums extended. https://CRAN.R-pro-ject.org/package=PMCMRplus
  35. Rahali,  E.  A.,  Chikhaoui,  A.,  Khattabi,  K.  E.,  & Ouzennou,  F.  (2023).  Learning  with  tab-lets in the primary school: Learners’ per-ceptions and impact on motivation and ac-ademic  performance. International  Jour-nal of Information and Education Technol-ogy, 13(3), 489–495. https://doi.org/10.18178/ijiet.2023.13.3.1830
  36. Ravizza,  S.  M.,  Uitvlugt,  M.  G.,  &  Fenn,  K.  M. (2017). Logged in and zoned out: How lap-top   internet   use   relates   to   classroom learning. Psychological    Science, 28(2), 171–180. https://doi.org/10.1177/0956797616677314
  37. Reinecke,   L.,   Aufenanger,   S.,   Beutel,   M.   E., Dreier,  M.,  Quiring,  O.,  Stark,  B.,  Wölfling, K.,  &  Müller,  K.  W.  (2017).  Digital  Stress over the Life Span: The Effects of Commu-nication  Load  and  Internet  Multitasking on   Perceived   Stress   and   Psychological Health  Impairments  in  a  German  Proba-bility   Sample. Media   Psychology, 20(1), 90–115. https://doi.org/10.1080/15213269.2015.1121832
  38. Reisdorf, B. C., Triwibowo, W., & Yankelevich, A. (2020). Laptop  or bust: How lack  of tech-nology     affects     student     achievement. American Behavioral Scientist, 64(7), 927–949. https://doi.org/10.1177/0002764220919145
  39. Rocha, B., Ferreira, L. I., Martins, C., Santos, R., & Nunes,  C.  (2023).  The  Dark  Side  of  Multi-media   Devices:   Negative   Consequences for  Socioemotional  Development  in  Early Childhood. Children, 10(11), 1807. https://doi.org/10.3390/chil-dren10111807
  40. Rodríguez-Arelis,  G.  A.,  Lourenzutti,  R.,  &  Coia, V.  (2024). Lecture  3—Generalized  linear models:  Ordinal  logistic  regression—Dsci 562—Regression ii[Github]. DSCI 562: Re-gression II. https://ubc-mds.github.io/DSCI_562_regr-2/notes/lecture3_glm_ordinal_regres-sion.html
  41. Sattar  Chaudhry,  A.  (2014).  Student  response to e-books: Study of attitude toward read-ing  among  elementary  school  children  in kuwait. The   Electronic   Library, 32(4), 458–472. https://doi.org/10.1108/EL-04-2012-0041
  42. Schlegel,  B.,  &  Steenbergen,  M.  (2020). Brant: Test   for   parallel   regression   assumption. https://CRAN.R-project.org/pack-age=brant
  43. Shejwal, B. R., & Purayidathil, J. (2006). Televi-sion   viewing   of   higher   secondary   stu-dents:    Does    it    affect    their    academic achievement  and  mathematical  reason-ing? Psychology  and  Developing  Societies, 18(2), 201–213. https://doi.org/10.1177/097133360601800203
  44. Simon Jackman. (2024). PSCL: classes and meth-ods  for  r  developed  in  the  political  science computational  laboratory(Version  1.5.9.) [R]. https://github.com/atahk/pscl (Orig-inal work published 2017)
  45. Supper, W., Talbot, D., & Guay, F. (2022).  Asso-ciation entre le temps d’écoute de la télé-vision  et  le  rendement  scolaire  des  en-fants et des adolescents: Recension systé-matique et méta-analyse des études longi-tudinales  réalisées  à  ce  jour. Canadian Journal   of   Behavioural   Science   /   Revue Canadienne   Des   Sciences   Du   Comporte-ment, 54(4), 304–314. https://doi.org/10.1037/cbs0000275
  46. Tag,  B.,  Van  Berkel,  N.,  Vargo,  A.  W.,  Sarsenba-yeva, Z., Colasante, T., Wadley, G., Webber, S.,  Smith,  W.,  Koval,  P.,  Hollenstein,  T., Goncalves,  J.,  &  Kostakos,  V.  (2022).  Im-pact  of  the  global  pandemic  upon  young people’s use of technology for emotion regulation. Computers in Human Behavior Reports, 6, 100192. https://doi.org/10.1016/j.chbr.2022.100192
  47. Tang,  H.,  &  Ji,  P.  (2014).  Using  the  statistical program r instead of spss to analyze data. In Tools  of  Chemistry  Education  Research(Vol.    1166,    pp.    135–151).    American Chemical Society. https://doi.org/10.1021/bk-2014-1166.ch008
  48. Tutz,  G.,  &  Berger,  M.  (2017).  Separating  loca-tion  and  dispersion  in  ordinal  regression models. Econometrics   and   Statistics, 2, 131–148. https://doi.org/10.1016/j.ecosta.2016.10.002
  49. Twenge,  J.  M.,  Martin,  G.  N.,  &  Campbell,  W.  K. (2018).  Decreases  in  psychological  well-being  among  American  adolescents  after 2012  and  links  to  screen  time  during  the rise  of  smartphone  technology. Emotion, 18(6), 765–780. https://doi.org/10.1037/emo0000403
  50. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s(Fourth). Springer. https://www.stats.ox.ac.uk/pub/MASS4/
  51. Wang,  F.,  Ni,  X.,  Zhang,  M.,  &  Zhang,  J.  (2024). Educational   digital   inequality:   A   meta-analysis  of the relationship between digi-tal  device  use  and  academic  performance in  adolescents. Computers  &  Education, 213, 105003. https://doi.org/10.1016/j.compedu.2024.105003
  52. Wang,  J.  C.,  Hsieh,  C.-Y.,  &  Kung,  S.-H.  (2023). The impact of smartphone use on learning effectiveness:   A   case   study   of   primary school    students. Education   and   Infor-mation  Technologies, 28(6),  6287–6320. https://doi.org/10.1007/s10639-022-11430-9
  53. World  Bank.  (2020). Philippines  Digital  Econ-omy Report 2020. World Bank. https://documents1.worldbank.org/cu-rated/en/796871601650398190/pdf/Philippines-Digital-Economy-Report-2020-A-Better-Normal-Under-COVID-19-Digi-talizing-the-Philippine-Economy-Now.pdf
  54. Wrede, S. J. S., Claassen, K., Rodil Dos Anjos, D., Kettschau,  J.  P.,  &  Broding,  H.  C.  (2023).
  55. Impact  of  digital  stress  on  negative  emo-tions and physical complaints in the home office:  A  follow  up  study. Health  Psychol-ogy    and    Behavioral    Medicine, 11(1), 2263068. https://doi.org/10.1080/21642850.2023.2263068
  56. Xu,  W.,  Huang,  R.,  Zhang,  H.,  El-Khamra,  Y.,  & Walling,  D.  (2016).  Empowering  r  with high  performance  computing  resources for  big  data  analytics.  In  R.  Arora  (Ed.), Conquering  Big  Data  with  High  Perfor-mance Computing(pp. 191–217). Springer International Publishing. https://doi.org/10.1007/978-3-319-33742-5_9
  57. Yee, T., cre,  & src),  C.  M. (LINPACK routines in. (2024). VGAM:  Vector  generalized  linear and    additive    models(Version    1.1-12) [Computer software]. https://cran.r-project.org/web/packages/VGAM/in-dex.html
  58. Yee,  T.  W.  (2022).  On  the  hauck-donner  effect in  waldtests:  Detection,  tipping  points, and   parameter   space   characterization. Journal of the American Statistical Associa-tion, 117(540), 1763–1774. https://doi.org/10.1080/01621459.2021.1886936
  59. Zhou, Y., & Deng, L. (2023). A systematic review of media multitasking in educational con-texts:  Trends,  gaps,  and  antecedents. In-teractive  Learning  Environments, 31(10), 6279–6294. Scopus. https://doi.org/10.1080/10494820.2022.2032760