Occurrence of Secondary Metabolites and Free Radical Scavenging Ability towards Better Adaptability of Some Mangrove Species in Elevated Salinity of Indian Sundarbans
Nirjhar Dasgupta | Paramita Nandy | Chandan Sengupta | Sauren Das
Abstract:
Mangrove, a specialized group of plant communities, provide immense
ecological and protective benefits to the coastal areas of the tropical and subtropical
world where they thrive. Demographic obligation and climatic
hostilities have massively altered their vegetation pattern and, even ruined
some key species to large extent. The present study aims to consider Reactive
Oxygen Species (ROS) scavenging skills in some degrading mangrove taxa of
Indian Sundarbans (Xylocarpus granatum and Heritiera fomes) compared
with some opulently growing ones (Excoecaria agallocha, Bruguiera
gymnorrhiza and Phoenix paludosa) in increasing salinity gradient, in
relation to their sustainability. Non-enzymatic antioxidants (secondary
metabolites) Proanthocyanidin and Tannin were estimated and Free radical
scavenging ability was evaluated by Singlet Oxygen Scavenging Activity
Assay, Reducing power assay, effects on Peroxynitrite, Nitric Oxide Radical
Scavenging, Hydrogen Peroxide Scavenging Activity Assay, Reaction with
Hypochlorous Acid, Superoxide Radical Scavenging Activity Assay and
Hydroxyl Radical Scavenging Activity. Relatively higher occurrence of
secondary metabolites and improved antioxidant ability were recorded in E.
agallocha, B. gymnorrhiza and P. paludosa; than the other two plants X.
granatum and H. fomes; where the trend showed a decline in the ROS
scavenging after a certain increase in salinity. Strong positive correlation of
both secondary metabolites and radical scavenging ability with salinity pose
the three stable taxa more viable in the higher salty environment of the
Indian Sundarbans. But relatively less ROS scavenging ability in more saline
zones, may be the potential reason for the unfavorable existence of the two
red listed plants, which would ultimately lead to gradual natural extinction of
them from the Indian Sundarbans.
References:
- ARUOMA, O.I. and B. HALLIWELL. 1987. Action of hypochlorous acid on the antioxidant protective enzymes superoxide dismutase, catalase and glutathione peroxidase.-J. Biochem. 248: 973-976.
- ASADA, K. 1987. Production and scavenging of active oxygen in photosynthesis. Photoinhibition. Elsevier Sci. Publishers
- BECKMAN, J.S., H. CHEN, H. ISCHIROPULOS and J.P. CROW. 1994. Oxidativechemistry of peroxynitrite. Methods Enzymol. 233: 229-240.
- BHATTACHARYA, S. 2005. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant. Curr. Sci. 89:1113-1121.
- DASGUPTA, N., P. NANDY and S. DAS. 2011. Photosynthesis and antioxidative enzyme activities in five Indian mangroves with respect to their adaptability. Acta. Physiol. Plant. 33:803-810.
- DASGUPTA, N., P. NANDY, C. SENGUPTA and S. DAS. 2012. Protein and enzymes regulations towards salt tolerance of some Indian mangroves in relation to adaptation. - Trees Struc. Func. 26:377-391.
- DASGUPTA, N., P. NANDY, C. TIWARI and S. DAS. 2010. Salinity-imposed changes of some isozymes and total leaf protein expression in five mangroves from two different habitats. J. Plant Int. 5:211-221.
- DASGUPTA, N., C. SENGUPTA and S. DAS. 2014. Role of Secondary Metabolites and Radical Scavenging Aptitude for Better Adaptability of Mangroves in Varying Salinity of Sundarbans, India. Ann. Trop. Res. 36: 1-21.
- DEDON, P.C. and R. TANNENBAUM. 2004. Reactive nitrogen species in the chemical biology of inflammation. Acta. Biochim. Biophys. 423:12-22.
- DELGADO-ANDRADE, C., J.A. RUFIÁN-HENARES and F.J. MORALES. 2005.Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J. Agri. Food. Chem. 53:7832-7836.
- DOGANLAR, Z.B., K. DEMIR, H. BASAK and I. GUL. 2010. Effects of salt stress on on pigment and total soluble protein contents of the three different tomato cultivars. Afr. J. Agri. Res. 5: 2056-2065.
- ELIZABETH, K. and M.N.A. RAO. 1990. Oxygen radical scavenging activity of curcumin. Int. J. Pharmaceut. 58: 237-240.
- EUROPÉENNE COMMISSION. 2000. procédures de prisesen charge de cereals par les organismesd'interventionainsique les methodesd'analyses pour la determination de la qualité. J. Officielcommunautéseur. 824: 20.
- FAO.: FOOD AND AGRICULTURAL ORGANIZATION, UNITED NATIONS (FAO). 2007.The World's Mangroves 1980-2005. FAO Forestry Paper 153, FAO, Rome.
- FAO.: Food and agriculture organization of the United Nations statistical databases, 2010. http://faostat.fao.org/
- FONTANA, M., L. MOSCA and M.A. ROSEI. 2001. Interaction of enkephalines with oxyradicals. Biochem. Pharmacol. 61: 1253-57.
- GARRAT, D.C. 1964. The Quantitative Analysis of Drugs Tokyo, Japan: Chapman and Hall Ltd, pp: 456-458.
- GAXIOLA, R.A., R. RAO, A. SHERMAN, P. GRISAFI, S.L. ALPER and G.R. FINK. 1999. The Arabidopsis thaliana proton transporters, AtNhx1and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 96:1480-1485.
- GHOSH, A., S. SCHMIDT, T. FICKERT and M. NÜSSER. 2015. The Indian Sundarban mangrove forests: history, utilization, conservation strategies and local perception. Diversity 7:149-169.
- GIRI, C., E. OCHIENG, L.L. TIESZEN, Z. ZHU, A. SINGH, T. LOVELAND, J. MASEK and N.C. DUKE. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol. Biogeogr. 20: 154-159.
- GRATAO, P.L., A. POLLE, P.J. LEA and R.A. AZEVEDO. 2005. Making the life of heavy metal stressed plants a little easier. Funct. Plant Biol. 32: 481-494.
- HALLIWELL, B. and J.M.C. GUTTERIDGE. 1989. Free radicals, ageing and disease. Free radicals in boil. Med. 2:446-493.
- HUDA-FAUJAN, N., A. NORIHAM, A.S. NORRAKIAH and A.S. BABJI. 2009. Antioxidant activity of plants methanolic extracts containing phenolic compounds. Afr. J. Biotechnol. 8: 484-489.
- IMLAY, J.A. 2003. Pathways of oxidative damage. Ann. Rev. Microbiol. 57: 395-408.
- ISCHIROPOULOS, H. and A.B. AL-MEHDI. 1995. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett. 164:279-282.
- KHAN, R.A., M.R. KHAN, S. SAHREEN and M. AHMED. 2012. Evaluation of phenolic contents and antioxidant activity of various solvent extracts of Sonchus asper (L.) Hill. Chem. Central J. 6: 1.
- KING, A. and G. YOUNG. 1999. Characteristics and occurrence of phenolic phytochemicals. J. Am. Diet. Assoc. 99: 213-218.
- KULCHARYK, P.A. and J.W. HEINECKE. 2001. Hypochlorous acid produced by the myeloperoxidase system of human phagocytes induces covalent cross-links between DNA and protein. Biochem. 40:3648-3656.
- LASHEM Y.Y. 1996. Nitric oxide in biological systems. Plant Growth. Regul. 18:155-159.
- LONG, L.H., P.J. EVANS, and B. HALLIWELL. 1999. Hydrogen peroxide in human urine: implications for antioxidant defense and redox regulation. Biochem. Biophys. Res. Commun. 262:605-609.
- MAHAJAN, S. and N. TUTEJA. 2005. Cold, salinity and drought stresses: An overview.Arch. Biochem. Biophy. 444: 139-158.
- MANSOURI, E., M. PANAHI, M.A. GHAFFARI and A. GHORBANI. 2011. Effects of grape seed proanthocyanidin extract on oxidative stress induced by diabetes in rat kidney. Iran Biomed. J. 15: 100-106.
- MAROIS, D.E. and W.J. MITSCH. 2015. Coastal protection from tsunamis and cyclones provided by mangrove wetlands-a review. Int. J. Biodiv. Sc, Eco. Ser. Manag. 11:71-83.
- MILLER, G., N. SUZUKI, L. RIZHSKY,A. HEGIE, S. KOUSSEVITZKY and R. MITTLER. 2007. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol. 144: 1777-1785.
- NAKASHIMA, K., K. YAMAGUCHI-SHINOZAKI and K. SHINOZAKI. 2014. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Abiotic Stress: Mol. Gen. Genom. 25.
- NANDY, P., S. DAS, M. GHOSE and R. SPOONER-HART. 2007. Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetl. Ecol. Manag. 15:347-357.
- OYAIZU, M. 1986. Studies on products of browning reactions: antioxidant activities of products of browning reaction prepared from glucoseamine. Jap. J. Nutr. 44: 307-315.
- PARANI, M., M. LAKSHMI, B. ZEIGENHAGEN, M. FLADUNG, P. SENTHILKUMAR and A. PARIDA. 2000. Molecular phylogeny of mangroves VII. PCR-RFLP of trnS - pbsC and rbcL gene regions in 24 mangrove and mangrove associate species. Theor. App. Genet. 100: 454-460.
- PARIDA, A.K., A.B. DAS and P. MOHANTY. 2004. Investigations on the antioxidative defense responses to NaCl stress in a mangrove, Bruguiera parviflora: Differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regulat. 42: 213- 226.
- PEDRAZA-CHAVERRI', J., D. BARRERA, P.D. MALDONADO, Y.I. CHIRINO, N.A. MACIAS-RUVALCABA, O.N. MEDINA-CAMPOS, L. CASTRO, M. SALCEDO and R. HERNÁNDEZ-PANDO. 2004. S-allylmercaptocysteine scavenges hydroxyl radical and singlet oxygen in vitro and attenuates gentamicin induced oxidative and nitrosative stress and renal damage in vivo. BMC Clin. Pharmacol. 4:5.
- Porter, L.J. 1993. The Flavonoids. In: Harborne J.B., (Ed.), Advances in Research Since 1986. London: Chapman, Hall. 23-55.
- RUBBO, H., R. RADI, M. TRUJILLO, R. TELLERI, B. KALYANARAMAN, S. BARNES, M. KIRK, B.A. FREEMAN. 1994. Nitric oxide regulation of superoxide and peroxynitrite- dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J. Biol. Chem. 269:26066-26075.
- SANCHEZ, M.G., J.M. PALMA, J.A. OCAMPO, LG. ROMERA and E. ARANDA. 2014. Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants. J. Plant Physio. 171:421-428.
- SHARMA, G., A.K. TYAGI, R.P. SINGH, D.C. CHAN and R. AGARWAL. 2004. Synergistic anti-cancer effects of grape seed extract and conventional cytotoxic agent doxorubicin against human breast carcinoma cells. Breast Cancer Res. Treat. 85:1-12.
- SHARMA, P., A.B. JHA, R.S. DUBEY and M. PESSARAKLI. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012: 1-26.
- SHI, H., M. ISHITANI, C. KIM, J.K. ZHU. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na?/H? antiporter. Proc. Nat. Acad. Sci. USA. 97:6896- 6901.
- SPALDING, M.D., A.L. MCIVOR, M.W. BECK, E.W. KOCH, I. MÖLLER, D.J. REED, P. RUBINOFF, T. SPENCER, T.J. TOLHURST, T.V. WAMSLEY and B.K. WESENBEECK. 2014. Coastal ecosystems: a critical element of risk reduction. Conser. Lett. 7:293-301.
- SUN, B., J.M. RICARDO-DA-SILVA and 1. SPRANGER. 1998. Critical factors of vanillin assay for catechins and proanthocyanidins. J. of Agri. Food. Chem. 46: 4267-4274.
- THE IUCN RED LIST OF THREATENED SPECIES. Version 2016-1, 2016. <www.iucnredlist.org>
- TIRZITIS, G. and G. BARTOSZ. 2010. Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochim. Pol. 57:139-142.
- TRIANTAPHYLIDÈS, C. and M. HAVAUX. 2009. Singlet oxygen in plants: production, detoxification and signaling. Trends plant sci. 14:219-228.
- TRIANTAPHYLIDÈS, C., M. KRISCHKE, F.A. HOEBERICHTS, B. KSAS, G. GRESSER, M. HAVAUX, F. VAN BREUSEGEM and M.J. MUELLER. 2008. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant physiol. 148: 960-968.
- VIRÁG, L., E. SZABO, P. GERGELY and C. SZABO. 2003. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol. Lett. 140:113-124.
- VRANOVA, E., S. ATICHARTPONGKUL, R. VILLARROEL, M.V. MONTAGU, D. INZ and W.V. CAMP. 2002. Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 99:870-875.
- Wu, X., Gu, L., Prior, R.L., McKay, S.: Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agr. Food Chem. 52: 7846-7856, 2004.
ISSN 2704-3541 (Online)
ISSN 0116-0710 (Print)