HomeAnnals of Tropical Researchvol. 44 no. 2 (2022)

Multivariate logistic regression analysis of risk factors for Salmonella spp. among ducks in selected barangays in Baybay City, Leyte

Neshelle D. Ceralvo | Eugene B. Lañada | Lotis M. Balala

 

Abstract:

Salmonella contamination in poultry and poultry products is a threat to public health and food safety. This study aimed to assess the carriage rate and the associated risk factors of spp. among ducks in Salmonella selected villages in Baybay City, Leyte, Philippines. Salmonella was identified using conventional culture methods. On-farm survey interviews were carried out with 400 duck farmers to generate information on the risk factors associated with Salmonella spp. Univariate analysis was performed to screen potential risk factors and multivariate logistic regression analysis to identify significant risk factors. The overall carriage rate of Salmonella in ducks was 22.75% ± 4.11. Multivariate logistic regression analysis identified the incorporation of snails into the diet (OR=5.212; 95% CI:1.374 to 19.765) and sources of water from rivers (OR=2.823; 95% CI:1.273 to 6.264) and ponds (OR=6.413; 95% CI:2.827 to 14.550) as significantly associated with Salmonella spp. in ducks in the sampled farms. The use of antibiotics (OR=0.022; 95% CI:0.003 to 0.196) and flooding in the rearing area (OR=0.485; 95% CI:0.242 to 0.971) indicated lower chances of Salmonella infection. The data suggested that Salmonella spp. does infect ducks in the target population. It is recommended that randomized field testing be carried out to validate these findings.



References:

  1. Adebayo-Tayo BC, Onilude AA & Etuk FI. 2011. Studies on microbiological, proximate mineral and heavy metal composition of freshwater snails from Niger Delta Creek in Nigeria. Assumption University Journal of Technology 14(4): 290-298
  2. Adzitey F, Rusul G & Huda N. 2012. Prevalence and antibiotic resistance of Salmonella serovars in ducks, duck rearing and processing environments in Penang, Malaysia.          Food                            Research     International        45(2):                       947-952.https://doi.org/10.1016/j.foodres.2011.02.051
  3. Akinyemi KO, Oyefolu AOB, Salu OB, Adewale OA & Fasure AK. 2006. Bacterial pathogens associated with tap and well waters in Lagos, Nigeria. East and Central African Journal of Surgery 11(1):110–117
  4. Ames H, Glenton C & Lewin S. 2019. Purposive sampling in a qualitative evidence synthesis: a worked example from a synthesis on parental perceptions of vaccination communication.   BMC   Medical   Research   Methodologies   19,   26.https://doi.org/10.1186/s12874-019-0665-4
  5. Andrews WH, Wilson CR, Romero A & Poelma PL. 1975. The Moroccan food snail: Helix aspersa as a source of Salmonella. Applied Microbiology 29(3): 328-330. doi: 10.1128/am.29.3.328-330.1975
  6. Antunes P Mourão J, Campos J & Peixe L. 2016. Salmonellosis: the role of poultry meat. Clinical Microbiology and Infection 22:2: 110-121. doi: 10.1016/j.cmi.2015.12.004 
  7. Azanza MP. 2006. Philippine foodborne disease outbreaks (1995–2004). Journal of Food Safety 26: 92–102. https://doi.org/10.1111/j.1745-4565.2005.00034.x
  8. Azanza MP, Membrebe BN, Sanchez RG, Estilo EE, Dollete UG, Feliciano RJ and Garcia NK. 2019. Foodborne disease outbreaks in the Philippines (2005–2018). Philippine Journal of Science 148 (2): 317-336
  9. Barrow PA, Lovell MA, Murphy CK & Page K. 1999. Salmonella infection in a commercial line of ducks; experimental studies on virulence, intestinal colonization and immune protection. Epidemiology and Infection 123: 121-132. doi: 10.1017/s0950268899002605
  10. Bartlett KH and Trust TJ. 1976. Isolation of salmonellae and other potential pathogens from the freshwater aquarium snail Ampullaria. Applied and Environmental Microbiology 31: 635-639. doi: 10.1128/aem.31.5.635-639.1976
  11. Bautista R. 2019. Duck Situation report, January-March 2019. Retrieved March 15, 2020, from http://www.psa.gov.ph/content/duck-situation-report-january-march-2019-0
  12. Betancor L, Pereira M, Martinez A, Giossa G, Fookes M, Flores K, Barrios P, Repiso V, Vignoli R, Cordeiro N, Algorta G, Thomson N, Maskell D, Schelotto F & Chabalgoity JA. 2010. Prevalence of Salmonella enterica in poultry and eggs in Uruguay during an epidemic due to Salmonella enterica serovar Enteritidis. Journal of Clinical Microbiology 48(7): 2413–2423. doi: 10.1128/JCM.02137-09
  13. Bollenbach T. 2015. Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolution. Current Opinion in Microbiology 27:1-9. https://doi.org/10.1016/j.mib.2015.05.008
  14. CDC.     2020.      Salmonella      and      Food.      Retrieved     June      8,      2021,      from https://www.cdc.gov/foodsafety/communication/salmonella- food.html#:~:text=Salmonella%20can%20be%20found%20in,it%20can%20make%20yo u%20sick
  15. Cha S, Kang M, Yoon R, Park C, Moon O & Jang H. 2013. Prevalence and antimicrobial susceptibility of Salmonella isolates in Pekin ducks from South Korea. Comparative Immunology, Microbiology and Infectious Diseases 36: 473– 479. doi: 10.1016/j.cimid.2013.03.004
  16. Chang H and Dagaas CT. 2004. The Philippine duck industry: Issues and research needs.University of New England. doi: 10.22004/ag.econ.12904
  17. DA-BAR. 2012. Duck raising. Retrieved December 1, 2019, from http://rfo02.da.gov.ph/?smd_p
  18. Demirbilek SK. 2018. Salmonellosis in animals. In: Salmonella – A re-emerging pathogen. IntechOpen. Pp19-37. doi: 10.5772/intechopem.72192
  19. Downs J, Loraamm R, Anderson JH Jr., Perry J & Bullock J. 2017. Habitat use and behaviours of introduced Muscovy ducks (Cairina moschata) in urban and suburban environments.     Suburban                                          Sustainability   5(1):                                         Article             1.https://www.doi.org/http://doi.org/10.5038/2164-0866.5.1.1028
  20. Escobin RP, Medialdia MTS, Bulatao MJG & Caramihan CFL. 2008. Production performance of ranged Mallard ducks (Anas platyrynchos) housed in traditional and floating duck sheds in Siniloan, Laguna. Philippine Journal of Veterinary and Animal Science 34(1):79-88
  21. Garmyn A, Vereecken M, Degussem K, Depondt W, Haesebrouck F & Martel A. 2017. Efficacy of tiamulin alone or in combination with chlortetracycline against experimental Mycoplasma gallisepticum Poultry Scienceinfection in chickens. 96: 3367-3374. https://doi.org/10.3382/ps/pex105
  22. Gerba CP and Rock C. 2014. The Produce Contamination Problem (2nd ed.). In K. R. Matthews, G. M. Sapers, C. P. Gerba (Eds.), Chapter 6 - Water quality. Academic Press. https://doi.org/10.1016/B978-0-12-404611-5.00006-3
  23. Greene SK, Daly ER, Talbot EA, Demma LJ, Holzbauer S, Patel NJ, Hill TA, Walderhaug MO, Hoekstra RM, Lynch MF & Painter JA. 2008. Recurrent multistate outbreak of Salmonella Newport associated with tomatoes from contaminated fields, 2005. Epidemiology and Infection 136(2):157-65. doi: 10.1017/S095026880700859X
  24. Gong J, Zhang J, Xu M, Zhu C, Yu Y, Liu X, Kelly P, Xu B & Wang C. 2014. Prevalence and fimbrial genotype distribution of poultry Salmonella isolates in China (2006 to 2012). Applied and Environmental Microbiology 80:687-693. doi: 10.1128/AEM.03223-13
  25. Harder T. 2014. Some notes on critical appraisal of prevalence studies. International Journal of Health Policy and Management 3: 289-290. doi: 10.15171/ijhpm.2014.99
  26. Islam KMS, Klein U & Burch DGS. 2009. The activity and compatibility of the antibiotic tiamulin with other drugs in poultry medicine—A review. Poultry Science 88: 2353–2359. https://doi.org/10.3382/ps.2009-00257
  27. ISO. 2004. ISO 6579:2002 Microbiology of food and animal feeding stuffs- Horizontal method for the detection of Salmonella spp. International Organization for Standardization, Switzerland
  28. Koeck DE, Pechtl A, Zverlov VV & Schwarz WH. 2014. Genomics of cellulolytic bacteria. Current Opinion in Biotechnology 29: 171–183. doi:10.1016/j.copbio.2014.07.002
  29. Levantesi C, Bonadonna L, Briancesco R, Grohmann E, Toze S & Tandoi V. 2012. Salmonella in surface and drinking water: Occurrence and water-mediated transmission.       Food                                 Research     International        45:                           586-602.https://doi.org/10.1016/j.foodres.2011.06.037
  30. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A & Hoekstra RM. 2006. The global burden of nontyphoidal Salmonella gastroenteritis. Clinical Infectious Diseases 50(6): 882-889. doi:10.1086/650733
  31. Martin SW, Meek AM & Willieberg P. 1998. Veterinary Epidemiology: Principal and Methods. Iowa State University Press, Ames, Iowa: USA
  32. Obi SK and Nzeako BC.1980. Salmonella arizona, Shigella and Aeromonas isolated from the snail Achatina achatina in Nigeria. Antonie Van Leeuwenhoek 46(5): 475-481. doi: 10.1007/BF00395828 
  33. Pernollet CA, Simpson D, Gauthier-Clerca M & Guillemain M. 2015. Rice and duck, a good combination? Identifying the incentives and triggers for joint rice farming and wild duck conservation. Agriculture, Ecosystems and Environment 214: 118–132. https://doi.org/10.1016/j.agee.2015.08.018
  34. PhilAtlas. 2020. Baybay. Retrieved November 26, 2020, from https://www.philatlas.com/visayas/r08/leyte/baybay.html
  35. Pittol M, Scully E, Miller D, Durso L, Fiuza LM & Valiati VH. 2018. Bacterial community of the rice floodwater using cultivation-Independent approaches. International Journal of Microbiology. https://doi.org/10.1155/2018/6280484
  36. Ribeiro SAM, Galleti MCM, Orsi MA, Ferrati AR, Mendonca AO, Doretto L Jr, Camillo SCA & Reischak D. 2006. Incidence of Salmonella in imported day-old ducklings. Brazil, 1998- 2003. Brazilian Journal of Poultry Science 8(1): 39-43. https://doi.org/10.1590/S1516- 635X2006000100006
  37. Robinson RS. 2014. Purposive sampling. In: Michalos AC (eds) Encyclopedia of Quality of Life and Well-being Research. Springer, Dordrecht
  38. Rodriguez JM, Rondón IS & Verjan N. 2015. Serotypes of Salmonella in broiler carcasses marketed at Ibague, Colombia. Brazilian Journal of Poultry Science17(4): 545-552. https://doi.org/10.1590/1516-635X1704545-552
  39. Schirone M, Visciano P, Tofalo R & Suzzi G. 2019. Foodborne pathogens: Hygiene and safety. Frontiers of Microbiology 10: 1974. doi: 10.3389/fmicb.2019.01974
  40. Serrano S, Medina LM, Jurado M & Jodral ML. 2004. Microbiological quality of terrestrial gastropods prepared for human consumption. Journal of Food Protection 67(8): 1779- 1781. DOI: 10.4315/0362-028x-67.8.1779
  41. Sinon BJS. 2018. EV farmers go back to basics. Retrieved September 29, 2020, from https://ati.da.gov.ph/ati-8/news/06302018-1614/ev-farmers-go-%E2%80%9Cback- basics%E2%80%9D
  42. Ma. Dolores C. Tongco. 2007. Purposive sampling as a tool for informant selection. Ethnobotany Research and Applications 5:147-158
  43. Zhang Y, Chen Y, Gu T, Xu Q, Zhu G & Chen G. 2019. Effects of Salmonella enterica serovar Enteritidis infection on egg production and the immune response of the laying duck (Anas platyrhynchos). Peer Journal 7:6359. DOI: 10.7717/peerj.6359