HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 6 no. 6 (2025)

Quantifying Greenhouse Gas Emissions of Water Buffalo by Age Category in Central Aurora, Philippines

Daniel T. Delos Santos | Michael M. Torres | Jo Neil Peria

Discipline: Education

 

Abstract:

The rise in global greenhouse gases, particularly methane from agricultural water buffalo, poses a significant climate threat. This study aimed to quantify methane and nitrous oxide emissions from these buffalo in Central Aurora, Philippines, where such data is currently unquantified. The objective was to provide local and national policymakers with specific emission data to develop targeted mitigation policies, reducing the environmental impact of buffalo farming while sustaining its benefits. The data were collected from farms and government offices, supplemented by expert discussions. IPCC Tier 1 emission factors with uncertainty value of 60%, specific to Southeast Asia and buffalo age categories, were used with population data to calculate annual methane and nitrous oxide emissions, expressed as CO2 equivalents also referring to all different warming gases in the atmosphere.



References:

  1. Albano, L., Ciriello, N., Auriemma, G., Palomba, R., Grazioli, G., & Sarubbi, F. (2020). Ni-trous Oxide Emissions of the Italian Medi-terranean Buffalo Breeding: Influence of Management. Asian Journal of Research in Biosciences, 2(2), 68–76. https://journalbioscience.com/index.php/AJORIB/issue/archive
  2. Ali, M., Khan, S., Rahman, A., & Begum, F. (2020). Age-related methane emissions in water buffalo: Implications for mitiga-tion. Journal of Agricultural Science, 12(3), 45–58.
  3. Assessment of Methane and Nitrous Oxide Emissions from Livestock in India. (2020). ResearchGate. https://www.researchgate.net/publication/227795507_Assessment_of_Methane_and_Nitrous_Oxide_Emissions_from_Livestock_inIndia
  4. Borghese, G., & Van den Bossche, P. (Eds.). (2018). The water buffalo: Production and health. CABI. https://doi.org/10.1079/9781786395112.0000
  5. Chadwick, D., Sapek, A., Sapek, B., & Cardenas, L. M. (2020). Methane and nitrous oxide emissions from UK livestock manures: A review of the state of the art. Journal of Agricultural Science, 158(1), 1–17. https://doi.org/10.1017/S002185961900085X
  6. Davies, H.F., Murphy, B.P., Duvert, C., & Neave, G. (2023). Controlling feral ruminants to reduce greenhouse gas emissions: a case study of buffalo in northern Australia Journal of Wildlife Research, 50(11) 908-909. https://doi.org/10.1071/WR22134
  7. Dietary, environmental and microbiological aspects of methane production in rumi-nants. (2021). Canadian Journal of Ani-mal Science, 96(3), 309–329. https://doi.org/10.22059/domesticsj.2023.364802.1133.
  8. FAO. (2022). The state of food and agriculture 2022: Innovation in food and agriculture. Food and Agriculture Organization of the United Nations. https://www.fao.org/documents/card/en/c/cb9479en
  9. Goopy, J. P., Gardiner, C. P., & Hegarty, R. S. (2019). Methane emissions from water buffalo: A review. Animal Production Sci-ence, 59(1), 1–11. https://doi.org/10.1071/AN18160
  10. Hristov, A. N., Oh, J., Lee, C., Meinen, R., Mon-tes, F., Ott, T., Tricarico, J. M., Kebreab, J., Waghorn, G., Wu, Z., Dell, C., Firmansyah, A., & Suyadi, S. (2013). Mitigation of me-thane and nitrous oxide emissions from animal operations: I. Enteric fermenta-tion. Journal of Animal Science, 91(11), 5044–5061. https://doi.org/10.2527/jas.2013-6490
  11. IPCC. (2006). 2006 IPCC Guidelines for Nation-al Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Invento-ries Programme for the Intergovernmen-tal Panel on Climate Change. IGES, Japan. https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html
  12. IPCC. (2013). Climate Change 2013: The Physi-cal Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Platt-ner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.004
  13. IPCC. (2021). Climate Change 2021: The Physi-cal Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. DOI: 10.1017/9781009157896
  14. JMB. (2022). Strategies to Mitigate Enteric Me-thane Emissions from Ruminant Animals. Journal of Microbiology and Biotechnolo-gy. https://doi.org/10.4014/jmb.2202.02019
  15. Lohakare, J. (2023). (PDF) Controlling feral ruminants to reduce greenhouse gas emis-sions. ResearchGate. https://www.researchgate.net/publication/366872906_Controlling_feral_ruminants_to_reduce_greenhouse_gas_emissions_a_case_study_of_buffalo_in_northern_Australia.
  16. Macleod, M. J., Hasan, M. R., Robb, D. H. F., & Mamun-Ur-Rashid, M. (2017). Environ-mental impact of dairy buffalo heifers kept on pasture or in confinement. Live-stock Science. https://doi.org/10.1016/j.livsci.2016.12.001
  17. Myhre, G., Shindell, D., Brasseur, G., Ehhalt, D., Prather, M., Fagerli, H., ... & Forster, P. (2013). Anthropogenic and natural radia-tive forcing. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 659-740). Cam-bridge University Press. DOI: 10.1017/CBO9781107415324.018
  18. Shibata, M., & Terada, F. (2010). Factors af-fecting methane production and mitiga-tion in ruminants. Animal Science Journal, 81(1), 2–13. https://doi.org/10.1111/j.1740-0929.2009.00687.x
  19. U.S. EPA. (2021). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2019Quantifying Greenhouse Gas Emissions of Water Buffalo by Age Category in Central Aurora, Philippines 
  20. Albano, L., Ciriello, N., Auriemma, G., Palomba, R., Grazioli, G., & Sarubbi, F. (2020). Ni-trous Oxide Emissions of the Italian Medi-terranean Buffalo Breeding: Influence of Management. Asian Journal of Research in Biosciences, 2(2), 68–76. https://journalbioscience.com/index.php/AJORIB/issue/archive 
  21. Ali, M., Khan, S., Rahman, A., & Begum, F. (2020). Age-related methane emissions in water buffalo: Implications for mitiga-tion. Journal of Agricultural Science, 12(3), 45–58.
  22. Assessment of Methane and Nitrous Oxide Emissions from Livestock in India. (2020). ResearchGate. https://www.researchgate.net/publication/227795507_Assessment_of_Methane_and_Nitrous_Oxide_Emissions_from_Livestock_inIndia
  23. Borghese, G., & Van den Bossche, P. (Eds.). (2018). The water buffalo: Production and health. CABI. https://doi.org/10.1079/9781786395112.0000
  24. Chadwick, D., Sapek, A., Sapek, B., & Cardenas, L. M. (2020). Methane and nitrous oxide emissions from UK livestock manures: A review of the state of the art. Journal of Agricultural Science, 158(1), 1–17. https://doi.org/10.1017/S002185961900085X
  25. Davies, H.F., Murphy, B.P., Duvert, C., & Neave, G. (2023). Controlling feral ruminants to reduce greenhouse gas emissions: a case study of buffalo in northern Australia Journal of Wildlife Research, 50(11) 908-909. https://doi.org/10.1071/WR22134
  26. Dietary, environmental and microbiological aspects of methane production in rumi-nants. (2021). Canadian Journal of Ani-mal Science, 96(3), 309–329. https://doi.org/10.22059/domesticsj.2023.364802.1133.
  27. FAO. (2022). The state of food and agriculture 2022: Innovation in food and agriculture. Food and Agriculture Organization of the United Nations. https://www.fao.org/documents/card/en/c/cb9479en
  28. Goopy, J. P., Gardiner, C. P., & Hegarty, R. S. (2019). Methane emissions from water buffalo: A review. Animal Production Sci-ence, 59(1), 1–11. https://doi.org/10.1071/AN18160
  29. Hristov, A. N., Oh, J., Lee, C., Meinen, R., Mon-tes, F., Ott, T., Tricarico, J. M., Kebreab, J., Waghorn, G., Wu, Z., Dell, C., Firmansyah, A., & Suyadi, S. (2013). Mitigation of me-thane and nitrous oxide emissions from animal operations: I. Enteric fermenta-tion. Journal of Animal Science, 91(11), 5044–5061. https://doi.org/10.2527/jas.2013-6490
  30. IPCC. (2006). 2006 IPCC Guidelines for Nation-al Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Invento-ries Programme for the Intergovernmen-tal Panel on Climate Change. IGES, Japan. https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html
  31. IPCC. (2013). Climate Change 2013: The Physi-cal Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Platt-ner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.004
  32. IPCC. (2021). Climate Change 2021: The Physi-cal Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. DOI: 10.1017/9781009157896
  33. JMB. (2022). Strategies to Mitigate Enteric Me-thane Emissions from Ruminant Animals. Journal of Microbiology and Biotechnolo-gy. https://doi.org/10.4014/jmb.2202.02019
  34. Lohakare, J. (2023). (PDF) Controlling feral ruminants to reduce greenhouse gas emis-sions. ResearchGate. https://www.researchgate.net/publication/366872906_Controlling_feral_ruminants_to_reduce_greenhouse_gas_emissions_a_case_study_of_buffalo_in_northern_Australia.
  35. Macleod, M. J., Hasan, M. R., Robb, D. H. F., & Mamun-Ur-Rashid, M. (2017). Environ-mental impact of dairy buffalo heifers kept on pasture or in confinement. Live-stock Science. https://doi.org/10.1016/j.livsci.2016.12.001
  36. Myhre, G., Shindell, D., Brasseur, G., Ehhalt, D., Prather, M., Fagerli, H., ... & Forster, P. (2013). Anthropogenic and natural radia-tive forcing. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 659-740). Cam-bridge University Press. DOI: 10.1017/CBO9781107415324.018
  37. Shibata, M., & Terada, F. (2010). Factors af-fecting methane production and mitiga-tion in ruminants. Animal Science Journal, 81(1), 2–13. https://doi.org/10.1111/j.1740-0929.2009.00687.x
  38. U.S. EPA. (2021). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2019