HomeQCU The Star: Journal of Science, Engineering, and Information Technologyvol. 1 no. 1 (2023)

Fresh Concrete Class Type Identifier System For Quality Control Utilizing Electronic Modules

Ericka N. Ellorin | Bea C. Ampoloquio | Rico C. Pasamonte | Aira Venice E. Radaza | Dexter John T. Simangan | Joseph H. Solares

Discipline: materials technology

 

Abstract:

Considering the increasing cases related to fraud of construction materials like cement, sand, and gravel, the fresh concrete class type identifier system would be a big help to the clients or customers. In this study, the researchers aim to develop a device that easily identifies the class types of fresh concrete using electronic modules. The temperature sensor can be embedded in concrete and used to sense the internal temperature of the curing concrete (Manuel Ramos, 2017). The Oven dry method is widely used for the determination of water content. The loss of weight that happens due to drying results in the measurement of the moisture content of the sample (Farhan Khan, 2020). The study was conducted and completed through actual testing. The result was accepted within theoretical ranges. Based on the information above, the Fresh Concrete class type identifier system using electronic modules can function with reference to the standard temperature content of the fresh concrete as well as the workability of the moisture content through the Moisture Sensor.



References:

  1. Shah, H. A., Yuan, Q., & Zuo, S. (2020). Air entrainment in fresh concrete and its effects on hardened concrete-a review. Construction and Building Materials, 121835. doi:10.1016/j.conbuildmat.2020.121835
  2. Jiao, D., Shi, C., Yuan, Q., An, X., Liu, Y., & Li, H. (2017). Ef ect of constituents on rheological properties of fresh concrete-A review. Cement and Concrete Composites, 83, 146-159. doi:10.1016/j.cemconcomp.2017.07.01
  3. Merna, T., Jobling, P., & Smith, N. J. (2014). Managing Risk in Construction Projects. Wiley.
  4. Saidi, M., Jadidi, K., & Karakouzian, M. (2022). Assessment of Quality of Fresh Concrete Delivered at Varying Temperatures. CivilEng, 3(1), 135-146. MDPI AG doi:10.3390/ civileng3010009
  5. Neville, A. M., & Brooks, J. J. (2010). Concrete Technology.
  6. Wight, J. K. (2016). Reinforced Concrete: Mechanics and Design, Global Edition.
  7. Moini, M., & Lakizadeh, A. (2011b). Concrete Workability: An Investigation on Temperature Ef ects Using Artificial Neural Networks. AuthorHouse.
  8. Krenzer, K., Mechtcherine, V., & Palzer, U. (2018). Simulating mixing processes of fresh concrete using the discrete element method (DEM) under consideration of water addition and changes in moisture distribution. Cement and Concrete Research. doi:10.1016/j.cemconres.2018.05.012
  9. Li, Z., Zhou, X., Ma, H., & Hou, D. (2022). Advanced Concrete Technology. John Wiley & Sons.
  10. Helal, J., Sofi, M., & Mendis, P. (2015). Non-Destructive Testing of Concrete: A Review of Methods. Electronic Journal of Structural Engineering, 14(1), 97-105. doi:10.56748/ ejse.141931
  11. Soutsos, M.; Kanavaris, F. The modified nurse-saul (MNS) maturity function for improved strength estimates at elevated curing temperatures. Case Stud. Constr. Mater. 2018, 9, 1-14
  12. Nasir, M.; Al-Amoudi, O.S.; Al-Gahtani, H.J.; Maslehuddin, M. Effect of casting temperature on strength and density of plain and blended cement concretes prepared and cured under hot weather conditions. Constr. Build. Mater. 2016, 112, 529-537.
  13. Neville, A.M. Wła ́sciwo ́sci Betonu; Polski Cement: Kraków, Poland, 2010; p. 874. 15. Ortiz, J.; Aguado, A.; Roncero, J.; Zermeno, M. Influencia de la temperatura ambiental sobre las propiedades de trabajabilidad y microestructurales de morteros y pastas de cemento. Indice 2009, 1, 2-24.