HomePsychology and Education: A Multidisciplinary Journalvol. 37 no. 8 (2025)

Learners’ Cognitive Development Through the Utilization of Mathematics Learning Tools: Factor Analysis

Charles Joseph Cañaveral

Discipline: Education

 

Abstract:

The study explored the learners’ cognitive development through the utilization of Mathematics learning tools: factor analysis. It determined the significant relationship between the use of mathematics learning tools and the level of cognitive development among learners in their academic performance. The quantitative descriptive research method was used with the statistical tools of percentage, frequency, weighted mean, chi-square, and Pearson r in the statistical treatment of data. The respondents expressed their responses in the questionnaire. It is revealed that most of the respondents are middle aged female teachers, who attended regional trainings. The mathematical learning tools present in the classroom that were utilized by the teachers are calculators, internet, smart phones, and activity sheets. These materials not only enhance collaboration but also contribute to a supportive and interactive learning environment. Teachers seldom use mathematics learning tools for creativity like Rubik’s Cube, Modulo Art, Origami and Tangrams. Despite their potential benefits, limited integration hinders their regular integration. The underutilization of these materials is attributed to several key reasons such as heavy workloads borne by teachers, preference for traditional teaching methods, and lack of training for teachers on the utilization of the said devices. The learners’ academic performance as seen in their report cards was at the average level. It was found out that there was a significant relationship between the utilization of Mathematics devices and the academic performance of the learners. Hence, when students actively engaged with mathematical tools and devices, there was a discernible impact on their academic performance. It is recommended that DepEd should implement the professional development program to familiarize teachers with various mathematics tools and enhance their proficiency in integrating these tools into their teaching practices. Recognition and celebration of teachers who are successfully integrate these tools into their teaching should be given attention by the school heads. Provision of teachers with guidance on how specific tools align with curriculum objectives, ensuring a coherent and purposeful integration that enhances learning outcomes. It also vital to encourage teachers to engage with research on efficacy of Mathematics tools and how their utilization positively impact on student learning. Lastly, to establish a system of continuous monitoring and evaluation of the integrations of mathematics tools in the teaching-learning process.



References:

  1. Agis, D. (2020). Exposure to great works of art. Great Minds. https://greatminds.org/math/blog/eureka/seeing-is-believing-the-power-of-using-art-to-teach-math
  2. Angus, L. (2020, October 21). How early childhood mathematics learning helps in cognitive development? LinkedIn. https://www.linkedin.com/pulse/how-early-childhood-mathematics-learning-helps-leigh-angus-maicd
  3. Capuno, R., et al. (2019). Attitudes, study habits, and academic performance of junior high school students in mathematics. International Electronic Journal of Mathematics Education, 14(3), 547–561. https://files.eric.ed.gov/fulltext/EJ1227082.pdf
  4. Cohen, P. (2012). In our prime: The invention of middle age. Scribner. https://www.amazon.com/Our-Prime-Invention-Middle-Age/dp/1416572899
  5. Cowan, R. (2021). The relationship between learning mathematics and general cognitive ability. ResearchGate. https://www.researchgate.net/publication/319086982
  6. Department of Education. (2012). K to 12 Basic Education Curriculum. https://www.slideserve.com/beatrice-antwan/the-k-to-12-curriculum
  7. Department of Education. (2020). D.O. 42, s. 2020: Guidelines for the remainder of School Year 2019–2020 in light of COVID-19 measures. https://www.deped.gov.ph/wp-content/uploads/2020/03/DM_s2020_042-2.pdf
  8. Eryılmaz, M. (2011). Why don’t mathematics teachers use instructional technology and materials in their courses? Procedia - Social and Behavioral Sciences, 15, 2687–2691. https://www.sciencedirect.com/science/article/pii/S1877042811006768
  9. Grönlund, Å., & Andersson, A. (2020). Integrating digital technology in mathematics education: A Swedish case study. Interactive Learning Environments, 28(4), 469–481. https://www.tandfonline.com/doi/full/10.1080/10494820.2020.1770801
  10. Heid, M. K. (2005). Technology in mathematics education: Tapping into visions of the future. In W. J. Masalski & P. C. Elliott (Eds.), Technology-supported mathematics learning environments: Sixty-seventh yearbook (pp. 345–366). National Council of Teachers of Mathematics. https://www.fi.uu.nl/publicaties/literatuur/technology_heid_2005.pdf
  11. Hobbs, R. (2019, September 20). Using mobile devices to open up the learning environment. Cambridge University Press. https://www.cambridge.org/elt/blog/2019/09/20/using-mobile-devices-learning-environment
  12. Jovarie. (2020). Importance of technology in math education. https://importanceoftechnology.net/importance-of-technology-in-math-education
  13. Klizienė, I., et al. (2022). The impact of achievements in mathematics on cognitive ability in primary school. International Journal of Environmental Research and Public Health, 19(11), 6852. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221140
  14. Nazario, D. (2020, November 4). Teacher’s group says module problems remain. Manila Bulletin. https://mb.com.ph/2020/11/04/teachers-group-says-module-problems-remain
  15. Office of Head Start. (n.d.). Cognition. Head Start ECLKC. https://eclkc.ohs.acf.hhs.gov/school-readiness/article/cognition
  16. Olive, J. (2011). Research on technology in mathematics education: Theoretical frameworks and practical examples. Keynote presented at the Korea Society of Educational Studies in Mathematics Conference, Seoul, South Korea. https://cadrek12.org/resources/research-technology-mathematics-education-theoretical-frameworks-and-practical-examples
  17. Papadakis, S., & Kalogiannakis, M. (2021). Teaching mathematics with mobile devices and the Realistic Mathematical Education (RME) approach in kindergarten. Advances in Mobile Learning Educational Research, 1(1), 5–18. https://www.syncsci.com/journal/AMLER/article/view/AMLER.2021.01.002
  18. Piaget, J. (2009). Piaget’s theory of cognitive development to mathematics on children’s quantitative development. ERIC. https://files.eric.ed.gov/fulltext/EJ841568
  19. Putrawangsa, S. (2022). The potential of spatial reasoning in mediating mathematical understanding: The case of number line. AIP Conference Proceedings, 2479, 020021. https://www.researchgate.net/publication/362271113
  20. Putrawangsa, S., & Hasanah, U. (2020). Sensorimotor-based digital media: An alternative design of digital tools in mathematics education. In Proceedings of the 2nd International Conference on Islam, Science and Technology (ICONIST 2019) (pp. 160–165). Atlantis Press. https://www.researchgate.net/publication/339624003
  21. StateUniversity.com. (n.d.). Mathematics learning: Learning tools. Education Encyclopedia. https://www.education.stateuniversity.com/pages/2202/Mathematics-Learning-LEARNING-TOOLS.html
  22. Tani, M. (2019, September 20). Why are teachers mostly female? The Conversation. https://theconversation.com/global/topics/female-teachers-32174
  23. The Educational Forum. (2024). The Educational Forum, 88(1). https://www.tandfonline.com/toc/utef20/current
  24. Trouche, L. (2020). Instrumentation in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (2nd ed.). Springer. https://link.springer.com/referenceworkentry/10.1007/978-3-030-15789-0_80
  25. Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. In P. Reimann & H. Spada (Eds.), Learning in humans and machines: Towards an interdisciplinary learning science (pp. 1–13). Elsevier. https://psycnet.apa.org/record/1995-35780-001