HomeNRCP Research Journalvol. 24 no. 2 (2025)

Acinetobacter spp. Dominate the Competing Microbiota of Campylobacter spp. in Selective Medium

Eleanor S. Austria | Christian Paul Munoz | Jhasmine Lyndsay Falogme | Marinette Rose M. Carpio | Jarale Joy Cabagbag | Kian Christian J. Elman | Gabriel Alexis S. Tubalinal | Claro N. Mingala

Discipline: food sciences

 

Abstract:

Non-target microorganisms grow abundantly on selective media presenting difficulty in the isolation of the more fastidious Campylobacter. This study aims to identify the competing microbiota of Campylobacter on modified charcoal cefoperazone agar, to help in the future development of protocol for isolating Campylobacter spp. Raw milk from backyard-raised carabaos were analyzed for the presence of Campylobacter spp. and the non-Campylobacter spp. that grew on the selective medium were identified using 16S rRNA and gene sequencing. Ten (10) bacterial strains were detected including, Acinetobacter spp., Escherichia coli, Pseudomonas spp. and Klebsiella pneumonia. Thirty (30) of the 53 sequenced isolates were identified as Acinetobacter spp. and eleven (11) were E. coli. Further analysis of confirmed Acinetobacter spp. isolates with PCR and blaOXA51-like gene primer revealed that majority (18 of 20 isolates) were A. baumanii. This study showed the composition of the competing microflora of Campylobacter on mCCDA, a data that can be used to determine the appropriate conditions and supplements to be added to the media to successfully isolate Campylobacter jejuni and C. coli in the raw milk of carabaos. Furthermore, this study revealed the presence of possible pathogenic microorganisms in raw carabaos’ milk which underscored the need to observe proper milk handling and processing to ensure public health safety.



References:

  1. Acke, E., McGill, K., Golden, O., Jones, B. R., Fanning, S., & Whyte, P. (2009). A comparison of different culture methods for the recovery of campylobacter species from pets. Zoonoses and Public Health, 56(9-10). https://doi.org/10.1111/j.1863-2378.2008.01205.x
  2. Ahmed, R., León-Velarde, C. G., & Odumeru, J. A. (2012). Evaluation of novel agars for the enumeration of Campylobacter spp. in poultry retail samples. Journal of Microbiological Methods, 88(2). https://doi.org/10.1016/j.mimet.2011.12.011
  3. Ajene, A. N., Fischer Walker, C. L., & Black, R. E. (2013). Enteric pathogens and reactive arthritis: A systematic review of Campylobacter, Salmonella and Shigella-associated reactive arthritis. Journal of Health, Population and Nutrition, 31(3). https://doi.org/10.3329/jhpn.v31i3.16515
  4. Atrouni, A. Al, Joly-Guillou, M. L., Hamze, M., & Kempf, M. (2016). Reservoirs of non-baumannii Acinetobacter species. Frontiers in Microbiology, 7). https://doi.org/10.3389/fmicb.2016.00049
  5. Austria, E. S., Carpio, M. R. M., Elman, K. C. J., Falogme, J. L. P., Cabagbag, J. J. A., Munoz, C. P. L., Amores, N. A. F., Soriano, H. S. P., Tubalinal, G. A. S., Sison, F. B., & Mingala, C. N. (2024). Prevalence and Antimicrobial Resistance of Campylobacter spp. in the Raw Milk of Backyard-Raised Carabaos (Bubalus bubalis) in the Philippines. International Journal of Dairy Science, 19(1), 18-26. https://doi.org/10.3923/ijds.2024.18.26
  6. Barkema, H. W., Schukken, Y. H., Lam, T. J. G. M., Beiboer, M. L., Wilmink, H., Benedictus, G., & Brand, A. (1998). Incidence of Clinical Mastitis in Dairy Herds Grouped in Three Categories by Bulk Milk Somatic Cell Counts. Journal of Dairy Science, 81(2). https://doi.org/10.3168/jds.S0022-0302(98)75591-2
  7. Baylis, C. L., MacPhee, S., Martin, K. W., Humphrey, T. J., & Betts, R. P. (2000). Comparison of three enrichment media for the isolation of Campylobacter spp. from foods. Journal of Applied Microbiology, 89(5). https://doi.org/10.1046/j.1365-2672.2000.01203.x
  8. Benoit, T., Cloutier, M., Schop, R., Lowerison, M. W., & Khan, I. U. H. (2020). Comparative assessment of growth media and incubation conditions for enhanced recovery and isolation of Acinetobacter baumannii from aquatic matrices. Journal of Microbiological Methods, 176. https://doi.org/10.1016/j.mimet.2020.106023
  9. Berlau, J., Aucken, H., Malnick, H., & Pitt, T. (1999). Distribution of Acinetobacter species on skin of healthy humans. European Journal of Clinical Microbiology and Infectious Diseases, 18(3). https://doi.org/10.1007/s100960050254
  10. Bernard, K., Bridger, N., Drews, S., Burdz, T., Wiebe, D., Pacheco, A. L., & Ng, B. (2013). Isolation and characterization of Pigmentiphaga-like isolates from human clinical material. Journal of Medical Microbiology, 62. https://doi.org/10.1099/jmm.0.051615-0
  11. Bi, S. L., Shi, L., Yan, H., & Meng, H. C. (2013). Comparison of various culture methods (Skirrow medium, a blood-free medium and a filtration system enriched in Bolton and Preston broths) for isolation of Campylobacter spp. from raw meat samples. Annals of Microbiology, 63(1). https://doi.org/10.1007/s13213-012-0459-y
  12. Biesta-Peters, E. G., Jongenburger, I., de Boer, E., & Jacobs-Reitsma, W. F. (2019). Validation by interlaboratory trials of EN ISO 10272 - Microbiology of the food chain - Horizontal method for detection and enumeration of Campylobacter Itspp. - Part 1: Detection method. International Journal of Food Microbiology, 288, 39-46. https://doi.org/10.1016/j.ijfoodmicro.2018.05.007
  13. Bletz, M. C., Bunk, B., Spröer, C., Biwer, P., Reiter, S., Rabemananjara, F. C. E., Schulz, S., Overmann, J., & Vences, M. (2019). Amphibian skin-associated Pigmentiphaga: Genome sequence and occurrence across geography and hosts. PLoS ONE, 14(10). https://doi.org/10.1371/journal.pone.0223747
  14. Carvalheira, A., Silva, J., & Teixeira, P. (2021). Acinetobacter spp. in food and drinking water – A review. Food Microbiology, 95. https://doi.org/10.1016/j.fm.2020.103675
  15. Cho, G. S., Li, B., Rostalsky, A., Fiedler, G., Rösch, N., Igbinosa, E., Kabisch, J., Bockelmann, W., Hammer, P., Huys, G., & Franz, C. M. A. P. (2018). Diversity and antibiotic susceptibility of Acinetobacter strains from milk powder produced in Germany. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00536
  16. Chon, J. W., Kim, H., Kim, H. S., & Seo, K. H. (2013). Improvement of modified charcoal-cefoperazone-deoxycholate agar by addition of potassium clavulanate for detecting Campylobacter spp. in chicken carcass rinse. International Journal of Food Microbiology, 165(1). https://doi.org/10.1016/j.ijfoodmicro.2013.04.006
  17. Chon, J. W., Kim, H. S., Kim, H., Oh, D. H., & Seo, K. H. (2014). Evaluation of potassium-clavulanate-supplemented modified charcoal-cefoperazone-deoxycholate agar for enumeration of Campylobacter in chicken carcass rinse. Journal of Food Science, 79(5). https://doi.org/10.1111/1750-3841.12388
  18. Chon, J. W., Kim, Y. J., Kim, H. S., Kim, D. H., Jeong, D. K., & Seo, K. H. (2016). Evaluation of Tazobactam-Supplemented, Modified Charcoal-Cefoperazone-Deoxycholate Agar for Qualitative Detection of Campylobacter from Chicken Carcass Rinse. Foodborne Pathogens and Disease, 13(5). https://doi.org/10.1089/fpd.2015.2062
  19. Chon, J. W., Kim, Y. J., Kim, H. S., Kim, D. H., Kim, H., Song, K. Y., Sung, K., & Seo, K. H. (2016). Evaluation of cephamycins as supplements to selective agar for detecting Campylobacter [A1] spp. in chicken carcass rinses. International Journal of Food Microbiology, 223. https://doi.org/10.1016/j.ijfoodmicro.2016.01.019
  20. Chon, J.-W., Hyeon, J.-Y., Yim, J.-H., Kim, J.-H., Song, K.-Y., & Seo, K.-H. (2012). Improvement of modified charcoal-cefoperazone-deoxycholate agar by  supplementation with a high concentration of polymyxin B for detection of Campylobacter jejuni and C. coli in chicken carcass rinses. Applied and Environmental Microbiology, 78(5), 1624-1626. https://doi.org/10.1128/AEM.07180-11
  21. Dekic, S., Hrenovic, J., van Wilpe, E., Venter, C., & Goic-Barisic, I. (2019). Survival of emerging pathogen Acinetobacter baumannii in water environment exposed to different oxygen conditions. Water Science and Technology, 80(8). https://doi.org/10.2166/wst.2019.408
  22. Dogan, B., & Boor, K. J. (2003). Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Applied and Environmental Microbiology, 69(1). https://doi.org/10.1128/AEM.69.1.130-138.2003
  23. El-Sherbeeny, M.R. (1996). Use of a Candle Jar for Incubating Campylobacter jejuni . In: Newell, D.G., Ketley, J.M., Feldman, R.A. (eds) Campylobactesr, Helicobacters, and Related Organisms. Springer. https://doi.org/10.1007/978-1-4757-9558-5_16
  24. Fernando, D. M., Khan, I. U. H., Patidar, R., Lapen, D. R., Talbot, G., Topp, E., & Kumar, A. (2016). Isolation and characterization of Acinetobacter baumannii recovered from campylobacter selective medium. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01871
  25. Finsterer, J. (2022). Triggers of Guillain–Barré Syndrome: Campylobacter jejuni Predominates. International Journal of Molecular Sciences, 23(22). https://doi.org/10.3390/ijms232214222
  26. Gharst, G., Oyarzabal, O. A., & Hussain, S. K. (2013). Review of current methodologies to isolate and identify Campylobacter spp. from foods. Journal of Microbiological Methods, 95(1), 84-92. https://doi.org/https://doi.org/10.1016/j.mimet.2013.07.014
  27. Gurung, M., Nam, H. M., Tamang, M. D., Chae, M. H., Jang, G. C., Jung, S. C., & Lim, S. K. (2013). Prevalence and antimicrobial susceptibility of Acinetobacter from raw bulk tank milk in Korea. Journal of Dairy Science, 96(4), 1997-2002. https://doi.org/https://doi.org/10.3168/jds.2012-5965
  28. Harrison, L. M., Balan, K. V., Hiett, K. L., & Babu, U. S. (2022). Current methodologies and future direction of Campylobacter isolation and detection from food matrices, clinical samples, and the agricultural environment. Journal of Microbiological Methods 201. https://doi.org/10.1016/j.mimet.2022.106562
  29. He, Y., Capobianco, J., Armstrong, C. M., Chen, C. Y., Counihan, K., Lee, J., Reed, S., & Tilman, S. (2024). Detection and Isolation of Campylobacter spp. from Raw Meat. Journal of Visualized Experiments, 2024(204). https://doi.org/10.3791/66462
  30. Hsieh, Y. H., Simpson, S., Kerdahi, K., & Sulaiman, I. M. (2018). A Comparative Evaluation Study of Growth Conditions for Culturing the Isolates of Campylobacter spp. Current Microbiology, 75(1). https://doi.org/10.1007/s00284-017-1351-6
  31. Huang, J., Ling, J., Kuang, C., Chen, J., Xu, Y., & Li, Y. (2018). Microbial biodegradation of aniline at low concentrations by Pigmentiphaga daeguensis isolated from textile dyeing sludge. International Biodeterioration and Biodegradation, 129. https://doi.org/10.1016/j.ibiod.2018.01.013
  32. Hunt, Jan; Abeyta, Carlos; Tran, T. (2001). Laboratory Methods - BAM: Campylobacter. FDA.
  33. Ioannou, P., Mavrikaki, V., & Kofteridis, D. P. (2020). Roseomonas species infections in humans: a systematic review. Journal of Chemotherapy, 32(5). https://doi.org/10.1080/1120009X.2020.1785742
  34. Ioannou, P., & Vougiouklakis, G. (2020). A Systematic Review of Human Infections by Pseudomonas mendocina. ropical Medicine and Infectious Disease, 5(2). https://doi.org/10.3390/tropicalmed5020071
  35. Jaakkonen, A., Kivistö, R., Aarnio, M., Kalekivi, J., & Hakkinen, M. (2020). Persistent contamination of raw milk by Campylobacter jejuni ST-883. PLoS ONE, 15(4). https://doi.org/10.1371/journal.pone.0231810
  36. Ji, M., Giangieri, G., Usman, M., Liu, C., Bosaro, M., Sessa, F., Canu, P., Treu, L., & Campanaro, S. (2023). An integrated Metagenomic-Pangenomic strategy revealed native microbes and magnetic biochar cooperation in plasticizer degradation. Chemical Engineering Journal, 468. https://doi.org/10.1016/j.cej.2023.143589
  37. Kim, B., & Seo, K. H. (2020). Development of a selective media for detecting Campylobacter spp. in chicken carcasses using avibactam supplemented mCCDA. Food Science and Biotechnology, 29(8). https://doi.org/10.1007/s10068-020-00759-x
  38. Kim, J., Oh, E., Banting, G. S., Braithwaite, S., Chui, L., Ashbolt, N. J., Neumann, N. F., & Jeon, B. (2016). An improved culture method for selective isolation of Campylobacter jejuni from wastewater. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01345
  39. Kim, J., Shin, H., Park, H., Jung, H., Kim, J., Cho, S., Ryu, S., & Jeon, B. (2019). Microbiota analysis for the optimization of Campylobacter isolation from chicken carcasses using selective media. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01381
  40. Klena, J. D., Parker, C. T., Knibb, K., Claire Ibbitt, J., Devane, P. M. L., Horn, S. T., Miller, W. G., & Konkel, M. E. (2004). Differentiation of Campylobacter coli, Campylobacter jejuni, Campylobacter lari, and Campylobacter upsaliensis by a multiplex PCR developed from the nucleotide sequence of the lipid A gene lpxA. Journal of Clinical Microbiology, 42(12), 5549-5557. https://doi.org/10.1128/JCM.42.12.5549-5557.2004
  41. Knipper, A. D., Crease, T., Günther, T., Filter, M., & Nauta, M. (2023). Quantitative microbiological risk assessment model for Campylobacter in raw milk of dairy cows in Germany. Microbial Risk Analysis, 25. https://doi.org/10.1016/j.mran.2023.100274
  42. Kobayashi, M., Zhang, Q., Segawa, T., Maeda, M., Hirano, R., Okabe, S., & Ishii, S. (2022). Temporal dynamics of Campylobacter and Arcobacter in a freshwater lake that receives fecal inputs from migratory geese. Water Research, 217. https://doi.org/10.1016/j.watres.2022.118397
  43. Lai, C. C., Chen, C. C., Lu, Y. C., Chuang, Y. C., & Tang, H. J. (2019). In vitro activity of cefoperazone and cefoperazone-sulbactam against carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Infection and Drug Resistance, 12. https://doi.org/10.2147/IDR.S181201
  44. Loeschcke, A., & Thies, S. (2015). Pseudomonas putida—a versatile host for the production of natural products. Applied Microbiology and Biotechnology 99(15). https://doi.org/10.1007/s00253-015-6745-4
  45. Martin-Pascual, M., Batianis, C., Bruinsma, L., Asin-Garcia, E., Garcia-Morales, L., Weusthuis, R. A., van Kranenburg, R., & Martins dos Santos, V. A. P. (2021). A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnology Advances, 49. https://doi.org/10.1016/j.biotechadv.2021.107732
  46. Mead, P. S., & Griffin, P. M. (1998). Escherichia coli O157:H7. Lancet, 352(9135). https://doi.org/10.1016/S0140-6736(98)01267-7
  47. Mitchell, K. E., Turton, J. F., & Lloyd, D. H. (2018). Isolation and identification of Acinetobacter spp. from healthy canine skin. Veterinary Dermatology, 29(3). https://doi.org/10.1111/vde.12528
  48. Moran, L., Kelly, C., Cormican, M., Mcgettrick, S., & Madden, R. H. (2011). Restoring the selectivity of Bolton broth during enrichment for Campylobacter spp. from raw chicken. Letters in Applied Microbiology, 52(6). https://doi.org/10.1111/j.1472-765X.2011.03046.x
  49. Ng, L. K., Stiles, M. E., & Taylor, D. E. (1985). Inhibition of Campylobacter coli and Campylobacter jejuni by antibiotics used in selective growth media. Journal of Clinical Microbiology, 22(4). https://doi.org/10.1128/jcm.22.4.510-514.1985
  50. Nielsen, H. L., Ejlertsen, T., & Nielsen, H. (2015). Polycarbonate filtration technique is noninferior to mCCDA for isolation of Campylobacter species from stool samples. Diagnostic Microbiology and Infectious Disease, 83(1). https://doi.org/10.1016/j.diagmicrobio.2015.05.008
  51. Olalemi, A. O., Ige, O. M., James, G. A., Obasoro, F. I., Okoko, F. O., & Ogunleye, C. O. (2021). Detection of enteric bacteria in t w o groundwater sources a n d associated microbial health risks. Journal of Water and Health, 19(2). https://doi.org/10.2166/wh.2021.212
  52. Oyarzabal, O. A., Macklin, K. S., Barbaree, J. M., & Miller, R. S. (2005). Evaluation of agar plates for direct enumeration of Campylobacter spp. from poultry carcass rinses. Applied and Environmental Microbiology, 71(6). https://doi.org/10.1128/AEM.71.6.3351-3354.2005
  53. Park, S. F. (2002). The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. International Journal of Food Microbiology, 74(3). https://doi.org/10.1016/S0168-1605(01)00678-X
  54. Pulami, D., Kämpfer, P., & Glaeser, S. P. (2023). High diversity of the emerging pathogen Acinetobacter baumannii and other Acinetobacter spp. in raw manure, biogas plants digestates, and rural and urban wastewater treatment plants with system specific antimicrobial resistance profiles. Science of The Total Environment, 859, 160182. https://doi.org/10.1016/J.SCITOTENV.2022.160182
  55. Rihs, J. D., Brenner, D. J., Weaver, R. E., Steigerwalt, A. G., Hollis, D. G., & Yu, V. L. (1993). Roseomonas, a new genus associated with bacteremia and other human infections. Journal of Clinical Microbiology, 31(12). https://doi.org/10.1128/jcm.31.12.3275-3283.1993
  56. Rodriguez, J. A., & Gushiken, A. C. (2023). Roseomonas Species bacteremia with associated endocarditis and possible CNS septic embolic phenomenon. Cureus, 15(6). https://doi.org/10.7759/cureus.40318
  57. Ryu, S., Park, W. S., Yun, B., Shin, M., Go, G., Kim, J. N., Oh, S., & Kim, Y. (2021). Diversity and characteristics of raw milk microbiota from Korean dairy farms using metagenomic and culturomic analysis. Food Control, 127. https://doi.org/10.1016/j.foodcont.2021.108160
  58. Same, R. G., & Tamma, P. D. (2018). Campylobacter infections in children. Pediatrics in Review, 39(11). https://doi.org/10.1542/pir.2017-0285
  59. Seliwiorstow, T., De Zutter, L., Houf, K., Botteldoorn, N., Baré, J., & Van Damme, I. (2016). Comparative performance of isolation methods using Preston broth, Bolton broth and their modifications for the detection of Campylobacter spp. from naturally contaminated fresh and frozen raw poultry meat. International Journal of Food Microbiology, 234. https://doi.org/10.1016/j.ijfoodmicro.2016.06.040
  60. Sheludchenko, M., Padovan, A., Katouli, M., & Stratton, H. (2020). Acinetobacter baumannii detected on modified charcoal-cefoperazone-deoxycholate agar in a waste stabilization pond. Canadian Journal of Microbiology, 66(3), 206-213. https://doi.org/10.1139/cjm-2019-0282
  61. Sison, F. B., Chaisowwong, W., Alter, T., Tiwananthagorn, S., Pichpol, D., Lampang, K. N., Baumann, M. P. O., & Gölz, G. (2014). Loads and antimicrobial resistance of Campylobacter spp. on fresh chicken meat in Nueva Ecija, Philippines. Poultry Science, 93(5), 1270-1273. https://doi.org/https://doi.org/10.3382/ps.2013-03791
  62. Smith, S., Meade, J., McGill, K., Gibbons, J., Bolton, D., & Whyte, P. (2015). Restoring the selectivity of modified charcoal cefoperazone deoxycholate agar for the isolation of Campylobacter species using tazobactam, a β-lactamase inhibitor. International Journal of Food Microbiology, 210. https://doi.org/10.1016/j.ijfoodmicro.2015.06.014
  63. Tejada, T. S., & Timm, C. D. (2019). Efficiency of different protocols for Campylobacter jejuni Isolation from poultry meat. Ciencia Animal Brasileira, 20. https://doi.org/10.1590/1809-6891v20e-41297
  64. Turton, J. F., Woodford, N., Glover, J., Yarde, S., Kaufmann, M. E., & Pitt, T. L. (2006). Identification of Acinetobacter baumannii by detection of the bla OXA-51-like carbapenemase gene intrinsic to this species. Journal of Clinical Microbiology, 44(8). https://doi.org/10.1128/JCM.01021-06
  65. Ugboma, A. N., Salihu, M. D., Magaji, A. A., & Abubakar, M. B. (2013). Prevalence of Campylobacter species in ground water in Sokoto, Sokoto state, Nigeria. Veterinary World, 6(6). https://doi.org/10.5455/vetworld.2013.285-287
  66. Van Tassell, J. A., Martin, N. H., Murphy, S. C., Wiedmann, M., Boor, K. J., & Ivy, R. A. (2012). Evaluation of various selective media for the detection of Pseudomonas species in pasteurized milk. Journal of Dairy Science, 95(3). https://doi.org/10.3168/jds.2011-4958
  67. Wei, B., Kang, M., & Jang, H. K. (2018). Evaluation of potassium clavulanate supplementation of Bolton broth for enrichment and detection of Campylobacter from chicken. PLoS ONE, 13(10). https://doi.org/10.1371/journal.pone.0205324
  68. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2). https://doi.org/10.1128/jb.173.2.697-703.1991
  69. Woodford, N., Ellington, M. J., Coelho, J. M., Turton, J. F., Ward, M. E., Brown, S., Amyes, S. G. B., & Livermore, D. M. (2006). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. International Journal of Antimicrobial Agents, 27(4). https://doi.org/10.1016/j.ijantimicag.2006.01.004
  70. Yang, H., Zhang, Y., Chuang, S., Cao, W., Ruan, Z., Xu, X., & Jiang, J. (2021). Bioaugmentation of acetamiprid-contaminated soil with Pigmentiphaga sp. strain D-2 and its effect on the soil microbial community. Ecotoxicology, 30(8). https://doi.org/10.1007/s10646-020-02336-8
  71. Yoo, J. H., Choi, N. Y., Bae, Y. M., Lee, J. S., & Lee, S. Y. (2014). Development of a selective agar plate for the detection of Campylobacter spp. in fresh produce. International Journal of Food Microbiology, 189, 67-74. https://doi.org/10.1016/j.ijfoodmicro.2014.07.032
  72. Yoon, J. H., Kang, S. J., Kim, W., & Oh, T. K. (2007). Pigmentiphaga daeguensis sp. nov., isolated from wastewater of a dye works, and emended description of the genus Pigmentiphaga. International Journal of Systematic and Evolutionary Microbiology, 57(6). https://doi.org/10.1099/ijs.0.64901-0
  73. Yushina, Y., Bataeva, D., Makhova, A., & Zayko, E. (2020). Prevalence of Campylobacter spp. in a poultry and pork processing plants. WPotravinarstvo Slovak Journal of Food Sciences, 14. https://doi.org/10.5219/1422
  74. Zadoks, R. N., Griffiths, H. M., Munoz, M. A., Ahlstrom, C., Bennett, G. J., Thomas, E., & Schukken, Y. H. (2011). Sources of Klebsiella and Raoultella species on dairy farms: Be careful where you walk. Journal of Dairy Science, 94(2). https://doi.org/10.3168/jds.2010-3603